Loading…

Work Statistics across a Quantum Phase Transition

We investigate the statistics of the work performed during a quench across a quantum phase transition using the adiabatic perturbation theory when the system is characterized by independent quasiparticles and the "single-excitation" approximation is assumed. It is shown that all the cumula...

Full description

Saved in:
Bibliographic Details
Published in:Physical review letters 2020-05, Vol.124 (17), p.170603-170603, Article 170603
Main Authors: Fei, Zhaoyu, Freitas, Nahuel, Cavina, Vasco, Quan, H T, Esposito, Massimiliano
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We investigate the statistics of the work performed during a quench across a quantum phase transition using the adiabatic perturbation theory when the system is characterized by independent quasiparticles and the "single-excitation" approximation is assumed. It is shown that all the cumulants of work exhibit universal scaling behavior analogous to the Kibble-Zurek scaling for the average density of defects. Two kinds of transformations are considered: quenches between two gapped phases in which a critical point is traversed, and quenches that end near the critical point. In contrast to the scaling behavior of the density of defects, the scaling behavior of the cumulants of work are shown to be qualitatively different for these two kinds of quenches. However, in both cases the corresponding exponents are fully determined by the dimension of the system and the critical exponents of the transition, as in the traditional Kibble-Zurek mechanism (KZM). Thus, our study deepens our understanding about the nonequilibrium dynamics of a quantum phase transition by revealing the imprint of the KZM on the work statistics.
ISSN:0031-9007
1079-7114
DOI:10.1103/physrevlett.124.170603