Loading…

Precision calculation of critical exponents in the O(N) universality classes with the nonperturbative renormalization group

We compute the critical exponents ν, η and ω of O(N) models for various values of N by implementing the derivative expansion of the nonperturbative renormalization group up to next-to-next-to-leading order [usually denoted O(∂^{4})]. We analyze the behavior of this approximation scheme at successive...

Full description

Saved in:
Bibliographic Details
Published in:Physical review. E 2020-04, Vol.101 (4-1), p.042113-042113, Article 042113
Main Authors: De Polsi, Gonzalo, Balog, Ivan, Tissier, Matthieu, Wschebor, Nicolás
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c389t-d8bb22d4888b9e3c22538d141488d643e2bd561274290dcdce5cc5b24ae81ae43
cites cdi_FETCH-LOGICAL-c389t-d8bb22d4888b9e3c22538d141488d643e2bd561274290dcdce5cc5b24ae81ae43
container_end_page 042113
container_issue 4-1
container_start_page 042113
container_title Physical review. E
container_volume 101
creator De Polsi, Gonzalo
Balog, Ivan
Tissier, Matthieu
Wschebor, Nicolás
description We compute the critical exponents ν, η and ω of O(N) models for various values of N by implementing the derivative expansion of the nonperturbative renormalization group up to next-to-next-to-leading order [usually denoted O(∂^{4})]. We analyze the behavior of this approximation scheme at successive orders and observe an apparent convergence with a small parameter, typically between 1/9 and 1/4, compatible with previous studies in the Ising case. This allows us to give well-grounded error bars. We obtain a determination of critical exponents with a precision which is similar or better than those obtained by most field-theoretical techniques. We also reach a better precision than Monte Carlo simulations in some physically relevant situations. In the O(2) case, where there is a long-standing controversy between Monte Carlo estimates and experiments for the specific heat exponent α, our results are compatible with those of Monte Carlo but clearly exclude experimental values.
doi_str_mv 10.1103/PhysRevE.101.042113
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2404638362</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2404638362</sourcerecordid><originalsourceid>FETCH-LOGICAL-c389t-d8bb22d4888b9e3c22538d141488d643e2bd561274290dcdce5cc5b24ae81ae43</originalsourceid><addsrcrecordid>eNo9kEtLAzEUhYMoVmp_gSBZ1sXUvGaaLqXUBxRbRNdDJnNrI9NkTDLV6p93ah-rezh851w4CF1RMqCU8Nv5chNeYD0ZUEIHRDBK-Qm6YGJIEkJSfnrUIu2gXggfhBCakdGQsnPU4UwwJgm5QL9zD9oE4yzWqtJNpeJWuwXW3kTTehi-a2fBxoCNxXEJeNZ_vsGNNWvwQVUmbrCuVAgQ8JeJy3_EOluDj40v2r41YA_W-VUL_-z6371r6kt0tlBVgN7-dtHb_eR1_JhMZw9P47tporkcxaSURcFYKaSUxQi4ZizlsqSCtk6ZCQ6sKNOMsqFgI1LqUkOqdVowoUBSBYJ3UX_XW3v32UCI-coEDVWlLLgm5EwQkXHJM9aifIdq70LwsMhrb1bKb3JK8u3w-WH41qD5bvg2db1_0BQrKI-Zw8z8D1wRgt4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2404638362</pqid></control><display><type>article</type><title>Precision calculation of critical exponents in the O(N) universality classes with the nonperturbative renormalization group</title><source>American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)</source><creator>De Polsi, Gonzalo ; Balog, Ivan ; Tissier, Matthieu ; Wschebor, Nicolás</creator><creatorcontrib>De Polsi, Gonzalo ; Balog, Ivan ; Tissier, Matthieu ; Wschebor, Nicolás</creatorcontrib><description>We compute the critical exponents ν, η and ω of O(N) models for various values of N by implementing the derivative expansion of the nonperturbative renormalization group up to next-to-next-to-leading order [usually denoted O(∂^{4})]. We analyze the behavior of this approximation scheme at successive orders and observe an apparent convergence with a small parameter, typically between 1/9 and 1/4, compatible with previous studies in the Ising case. This allows us to give well-grounded error bars. We obtain a determination of critical exponents with a precision which is similar or better than those obtained by most field-theoretical techniques. We also reach a better precision than Monte Carlo simulations in some physically relevant situations. In the O(2) case, where there is a long-standing controversy between Monte Carlo estimates and experiments for the specific heat exponent α, our results are compatible with those of Monte Carlo but clearly exclude experimental values.</description><identifier>ISSN: 2470-0045</identifier><identifier>EISSN: 2470-0053</identifier><identifier>DOI: 10.1103/PhysRevE.101.042113</identifier><identifier>PMID: 32422800</identifier><language>eng</language><publisher>United States</publisher><ispartof>Physical review. E, 2020-04, Vol.101 (4-1), p.042113-042113, Article 042113</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c389t-d8bb22d4888b9e3c22538d141488d643e2bd561274290dcdce5cc5b24ae81ae43</citedby><cites>FETCH-LOGICAL-c389t-d8bb22d4888b9e3c22538d141488d643e2bd561274290dcdce5cc5b24ae81ae43</cites><orcidid>0000-0002-3381-6538 ; 0000-0001-5741-4560</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32422800$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>De Polsi, Gonzalo</creatorcontrib><creatorcontrib>Balog, Ivan</creatorcontrib><creatorcontrib>Tissier, Matthieu</creatorcontrib><creatorcontrib>Wschebor, Nicolás</creatorcontrib><title>Precision calculation of critical exponents in the O(N) universality classes with the nonperturbative renormalization group</title><title>Physical review. E</title><addtitle>Phys Rev E</addtitle><description>We compute the critical exponents ν, η and ω of O(N) models for various values of N by implementing the derivative expansion of the nonperturbative renormalization group up to next-to-next-to-leading order [usually denoted O(∂^{4})]. We analyze the behavior of this approximation scheme at successive orders and observe an apparent convergence with a small parameter, typically between 1/9 and 1/4, compatible with previous studies in the Ising case. This allows us to give well-grounded error bars. We obtain a determination of critical exponents with a precision which is similar or better than those obtained by most field-theoretical techniques. We also reach a better precision than Monte Carlo simulations in some physically relevant situations. In the O(2) case, where there is a long-standing controversy between Monte Carlo estimates and experiments for the specific heat exponent α, our results are compatible with those of Monte Carlo but clearly exclude experimental values.</description><issn>2470-0045</issn><issn>2470-0053</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9kEtLAzEUhYMoVmp_gSBZ1sXUvGaaLqXUBxRbRNdDJnNrI9NkTDLV6p93ah-rezh851w4CF1RMqCU8Nv5chNeYD0ZUEIHRDBK-Qm6YGJIEkJSfnrUIu2gXggfhBCakdGQsnPU4UwwJgm5QL9zD9oE4yzWqtJNpeJWuwXW3kTTehi-a2fBxoCNxXEJeNZ_vsGNNWvwQVUmbrCuVAgQ8JeJy3_EOluDj40v2r41YA_W-VUL_-z6371r6kt0tlBVgN7-dtHb_eR1_JhMZw9P47tporkcxaSURcFYKaSUxQi4ZizlsqSCtk6ZCQ6sKNOMsqFgI1LqUkOqdVowoUBSBYJ3UX_XW3v32UCI-coEDVWlLLgm5EwQkXHJM9aifIdq70LwsMhrb1bKb3JK8u3w-WH41qD5bvg2db1_0BQrKI-Zw8z8D1wRgt4</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>De Polsi, Gonzalo</creator><creator>Balog, Ivan</creator><creator>Tissier, Matthieu</creator><creator>Wschebor, Nicolás</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3381-6538</orcidid><orcidid>https://orcid.org/0000-0001-5741-4560</orcidid></search><sort><creationdate>20200401</creationdate><title>Precision calculation of critical exponents in the O(N) universality classes with the nonperturbative renormalization group</title><author>De Polsi, Gonzalo ; Balog, Ivan ; Tissier, Matthieu ; Wschebor, Nicolás</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c389t-d8bb22d4888b9e3c22538d141488d643e2bd561274290dcdce5cc5b24ae81ae43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>De Polsi, Gonzalo</creatorcontrib><creatorcontrib>Balog, Ivan</creatorcontrib><creatorcontrib>Tissier, Matthieu</creatorcontrib><creatorcontrib>Wschebor, Nicolás</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review. E</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>De Polsi, Gonzalo</au><au>Balog, Ivan</au><au>Tissier, Matthieu</au><au>Wschebor, Nicolás</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Precision calculation of critical exponents in the O(N) universality classes with the nonperturbative renormalization group</atitle><jtitle>Physical review. E</jtitle><addtitle>Phys Rev E</addtitle><date>2020-04-01</date><risdate>2020</risdate><volume>101</volume><issue>4-1</issue><spage>042113</spage><epage>042113</epage><pages>042113-042113</pages><artnum>042113</artnum><issn>2470-0045</issn><eissn>2470-0053</eissn><abstract>We compute the critical exponents ν, η and ω of O(N) models for various values of N by implementing the derivative expansion of the nonperturbative renormalization group up to next-to-next-to-leading order [usually denoted O(∂^{4})]. We analyze the behavior of this approximation scheme at successive orders and observe an apparent convergence with a small parameter, typically between 1/9 and 1/4, compatible with previous studies in the Ising case. This allows us to give well-grounded error bars. We obtain a determination of critical exponents with a precision which is similar or better than those obtained by most field-theoretical techniques. We also reach a better precision than Monte Carlo simulations in some physically relevant situations. In the O(2) case, where there is a long-standing controversy between Monte Carlo estimates and experiments for the specific heat exponent α, our results are compatible with those of Monte Carlo but clearly exclude experimental values.</abstract><cop>United States</cop><pmid>32422800</pmid><doi>10.1103/PhysRevE.101.042113</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-3381-6538</orcidid><orcidid>https://orcid.org/0000-0001-5741-4560</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2470-0045
ispartof Physical review. E, 2020-04, Vol.101 (4-1), p.042113-042113, Article 042113
issn 2470-0045
2470-0053
language eng
recordid cdi_proquest_miscellaneous_2404638362
source American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)
title Precision calculation of critical exponents in the O(N) universality classes with the nonperturbative renormalization group
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T20%3A24%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Precision%20calculation%20of%20critical%20exponents%20in%20the%20O(N)%20universality%20classes%20with%20the%20nonperturbative%20renormalization%20group&rft.jtitle=Physical%20review.%20E&rft.au=De%20Polsi,%20Gonzalo&rft.date=2020-04-01&rft.volume=101&rft.issue=4-1&rft.spage=042113&rft.epage=042113&rft.pages=042113-042113&rft.artnum=042113&rft.issn=2470-0045&rft.eissn=2470-0053&rft_id=info:doi/10.1103/PhysRevE.101.042113&rft_dat=%3Cproquest_cross%3E2404638362%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c389t-d8bb22d4888b9e3c22538d141488d643e2bd561274290dcdce5cc5b24ae81ae43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2404638362&rft_id=info:pmid/32422800&rfr_iscdi=true