Loading…
Solitons and topological waves
A laser-fabricated waveguide array creates a nonlinear medium that supports solitons The intense coherent emission from lasers enabled the study of light propagation in nonlinear media, which spurred many important applications. More recently, the study of electromagnetic wave propagation in periodi...
Saved in:
Published in: | Science (American Association for the Advancement of Science) 2020-05, Vol.368 (6493), p.821-822 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c325t-d3be0115563bd46c5ffae801dc0da9ab0d79d0ee23822359f18f21120ad76e2e3 |
---|---|
cites | cdi_FETCH-LOGICAL-c325t-d3be0115563bd46c5ffae801dc0da9ab0d79d0ee23822359f18f21120ad76e2e3 |
container_end_page | 822 |
container_issue | 6493 |
container_start_page | 821 |
container_title | Science (American Association for the Advancement of Science) |
container_volume | 368 |
creator | Ablowitz, Mark J Cole, Justin T |
description | A laser-fabricated waveguide array creates a nonlinear medium that supports solitons
The intense coherent emission from lasers enabled the study of light propagation in nonlinear media, which spurred many important applications. More recently, the study of electromagnetic wave propagation in periodic media, where linear band structures play an important role, has advanced in new directions. By breaking certain symmetries, such as time reversal, the medium can support so-called “topologically protected” modes that possess uncommon robustness to material defects. Theory has suggested that certain nonlinear waves can inherit the topology of associated linear waves. On page 856 of this issue, Mukherjee and Rechtsman (
1
) describe experiments where such nonlinear waves, called solitons, can now be observed in the bulk of photonic topological media. These localized waves exhibit cyclotronic motion as the light propagates down a specifically engineered waveguide. When a different mode is considered—one with trivial topology—the waves no longer circulate but remain essentially fixed in their initial spatial distribution. |
doi_str_mv | 10.1126/science.abb5162 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2406302889</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2405732689</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-d3be0115563bd46c5ffae801dc0da9ab0d79d0ee23822359f18f21120ad76e2e3</originalsourceid><addsrcrecordid>eNpdkD1PwzAQhi0EoqUws1WVWFjSnn21HY-o4kuqxADMkWNfUKo0LnEC4t-T0sDAdMM976u7h7FLDnPOhVpEV1LtaG7zXHIljtiYg5GJEYDHbAyAKklByxE7i3ED0O8MnrIRiiUarfWYTZ9DVbahjjNb-1kbdqEKb6Wz1ezTflA8ZyeFrSJdDHPCXu9uX1YPyfrp_nF1s04cCtkmHnMCzqVUmPulcrIoLKXAvQNvjc3Ba-OBSGAqBEpT8LQQ_QNgvVYkCCfs-tC7a8J7R7HNtmV0VFW2ptDFTCxBIYg0NT169Q_dhK6p--v2lNQo1A-1OFCuCTE2VGS7ptza5ivjkO3VZYO6bFDXJ6ZDb5dvyf_xv67wGxIAaic</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2405732689</pqid></control><display><type>article</type><title>Solitons and topological waves</title><source>American Association for the Advancement of Science</source><source>Alma/SFX Local Collection</source><creator>Ablowitz, Mark J ; Cole, Justin T</creator><creatorcontrib>Ablowitz, Mark J ; Cole, Justin T</creatorcontrib><description>A laser-fabricated waveguide array creates a nonlinear medium that supports solitons
The intense coherent emission from lasers enabled the study of light propagation in nonlinear media, which spurred many important applications. More recently, the study of electromagnetic wave propagation in periodic media, where linear band structures play an important role, has advanced in new directions. By breaking certain symmetries, such as time reversal, the medium can support so-called “topologically protected” modes that possess uncommon robustness to material defects. Theory has suggested that certain nonlinear waves can inherit the topology of associated linear waves. On page 856 of this issue, Mukherjee and Rechtsman (
1
) describe experiments where such nonlinear waves, called solitons, can now be observed in the bulk of photonic topological media. These localized waves exhibit cyclotronic motion as the light propagates down a specifically engineered waveguide. When a different mode is considered—one with trivial topology—the waves no longer circulate but remain essentially fixed in their initial spatial distribution.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.abb5162</identifier><identifier>PMID: 32439777</identifier><language>eng</language><publisher>United States: The American Association for the Advancement of Science</publisher><subject>Cyclotrons ; Electromagnetic radiation ; Emission analysis ; Lasers ; Solitary waves ; Spatial distribution ; Topology ; Wave propagation ; Waveguides</subject><ispartof>Science (American Association for the Advancement of Science), 2020-05, Vol.368 (6493), p.821-822</ispartof><rights>Copyright © 2020, American Association for the Advancement of Science</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c325t-d3be0115563bd46c5ffae801dc0da9ab0d79d0ee23822359f18f21120ad76e2e3</citedby><cites>FETCH-LOGICAL-c325t-d3be0115563bd46c5ffae801dc0da9ab0d79d0ee23822359f18f21120ad76e2e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2884,2885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32439777$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ablowitz, Mark J</creatorcontrib><creatorcontrib>Cole, Justin T</creatorcontrib><title>Solitons and topological waves</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>A laser-fabricated waveguide array creates a nonlinear medium that supports solitons
The intense coherent emission from lasers enabled the study of light propagation in nonlinear media, which spurred many important applications. More recently, the study of electromagnetic wave propagation in periodic media, where linear band structures play an important role, has advanced in new directions. By breaking certain symmetries, such as time reversal, the medium can support so-called “topologically protected” modes that possess uncommon robustness to material defects. Theory has suggested that certain nonlinear waves can inherit the topology of associated linear waves. On page 856 of this issue, Mukherjee and Rechtsman (
1
) describe experiments where such nonlinear waves, called solitons, can now be observed in the bulk of photonic topological media. These localized waves exhibit cyclotronic motion as the light propagates down a specifically engineered waveguide. When a different mode is considered—one with trivial topology—the waves no longer circulate but remain essentially fixed in their initial spatial distribution.</description><subject>Cyclotrons</subject><subject>Electromagnetic radiation</subject><subject>Emission analysis</subject><subject>Lasers</subject><subject>Solitary waves</subject><subject>Spatial distribution</subject><subject>Topology</subject><subject>Wave propagation</subject><subject>Waveguides</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpdkD1PwzAQhi0EoqUws1WVWFjSnn21HY-o4kuqxADMkWNfUKo0LnEC4t-T0sDAdMM976u7h7FLDnPOhVpEV1LtaG7zXHIljtiYg5GJEYDHbAyAKklByxE7i3ED0O8MnrIRiiUarfWYTZ9DVbahjjNb-1kbdqEKb6Wz1ezTflA8ZyeFrSJdDHPCXu9uX1YPyfrp_nF1s04cCtkmHnMCzqVUmPulcrIoLKXAvQNvjc3Ba-OBSGAqBEpT8LQQ_QNgvVYkCCfs-tC7a8J7R7HNtmV0VFW2ptDFTCxBIYg0NT169Q_dhK6p--v2lNQo1A-1OFCuCTE2VGS7ptza5ivjkO3VZYO6bFDXJ6ZDb5dvyf_xv67wGxIAaic</recordid><startdate>20200522</startdate><enddate>20200522</enddate><creator>Ablowitz, Mark J</creator><creator>Cole, Justin T</creator><general>The American Association for the Advancement of Science</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20200522</creationdate><title>Solitons and topological waves</title><author>Ablowitz, Mark J ; Cole, Justin T</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-d3be0115563bd46c5ffae801dc0da9ab0d79d0ee23822359f18f21120ad76e2e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Cyclotrons</topic><topic>Electromagnetic radiation</topic><topic>Emission analysis</topic><topic>Lasers</topic><topic>Solitary waves</topic><topic>Spatial distribution</topic><topic>Topology</topic><topic>Wave propagation</topic><topic>Waveguides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ablowitz, Mark J</creatorcontrib><creatorcontrib>Cole, Justin T</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ablowitz, Mark J</au><au>Cole, Justin T</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Solitons and topological waves</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>2020-05-22</date><risdate>2020</risdate><volume>368</volume><issue>6493</issue><spage>821</spage><epage>822</epage><pages>821-822</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><abstract>A laser-fabricated waveguide array creates a nonlinear medium that supports solitons
The intense coherent emission from lasers enabled the study of light propagation in nonlinear media, which spurred many important applications. More recently, the study of electromagnetic wave propagation in periodic media, where linear band structures play an important role, has advanced in new directions. By breaking certain symmetries, such as time reversal, the medium can support so-called “topologically protected” modes that possess uncommon robustness to material defects. Theory has suggested that certain nonlinear waves can inherit the topology of associated linear waves. On page 856 of this issue, Mukherjee and Rechtsman (
1
) describe experiments where such nonlinear waves, called solitons, can now be observed in the bulk of photonic topological media. These localized waves exhibit cyclotronic motion as the light propagates down a specifically engineered waveguide. When a different mode is considered—one with trivial topology—the waves no longer circulate but remain essentially fixed in their initial spatial distribution.</abstract><cop>United States</cop><pub>The American Association for the Advancement of Science</pub><pmid>32439777</pmid><doi>10.1126/science.abb5162</doi><tpages>2</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0036-8075 |
ispartof | Science (American Association for the Advancement of Science), 2020-05, Vol.368 (6493), p.821-822 |
issn | 0036-8075 1095-9203 |
language | eng |
recordid | cdi_proquest_miscellaneous_2406302889 |
source | American Association for the Advancement of Science; Alma/SFX Local Collection |
subjects | Cyclotrons Electromagnetic radiation Emission analysis Lasers Solitary waves Spatial distribution Topology Wave propagation Waveguides |
title | Solitons and topological waves |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T10%3A05%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Solitons%20and%20topological%20waves&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Ablowitz,%20Mark%20J&rft.date=2020-05-22&rft.volume=368&rft.issue=6493&rft.spage=821&rft.epage=822&rft.pages=821-822&rft.issn=0036-8075&rft.eissn=1095-9203&rft_id=info:doi/10.1126/science.abb5162&rft_dat=%3Cproquest_cross%3E2405732689%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c325t-d3be0115563bd46c5ffae801dc0da9ab0d79d0ee23822359f18f21120ad76e2e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2405732689&rft_id=info:pmid/32439777&rfr_iscdi=true |