Loading…

Solitons and topological waves

A laser-fabricated waveguide array creates a nonlinear medium that supports solitons The intense coherent emission from lasers enabled the study of light propagation in nonlinear media, which spurred many important applications. More recently, the study of electromagnetic wave propagation in periodi...

Full description

Saved in:
Bibliographic Details
Published in:Science (American Association for the Advancement of Science) 2020-05, Vol.368 (6493), p.821-822
Main Authors: Ablowitz, Mark J, Cole, Justin T
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c325t-d3be0115563bd46c5ffae801dc0da9ab0d79d0ee23822359f18f21120ad76e2e3
cites cdi_FETCH-LOGICAL-c325t-d3be0115563bd46c5ffae801dc0da9ab0d79d0ee23822359f18f21120ad76e2e3
container_end_page 822
container_issue 6493
container_start_page 821
container_title Science (American Association for the Advancement of Science)
container_volume 368
creator Ablowitz, Mark J
Cole, Justin T
description A laser-fabricated waveguide array creates a nonlinear medium that supports solitons The intense coherent emission from lasers enabled the study of light propagation in nonlinear media, which spurred many important applications. More recently, the study of electromagnetic wave propagation in periodic media, where linear band structures play an important role, has advanced in new directions. By breaking certain symmetries, such as time reversal, the medium can support so-called “topologically protected” modes that possess uncommon robustness to material defects. Theory has suggested that certain nonlinear waves can inherit the topology of associated linear waves. On page 856 of this issue, Mukherjee and Rechtsman ( 1 ) describe experiments where such nonlinear waves, called solitons, can now be observed in the bulk of photonic topological media. These localized waves exhibit cyclotronic motion as the light propagates down a specifically engineered waveguide. When a different mode is considered—one with trivial topology—the waves no longer circulate but remain essentially fixed in their initial spatial distribution.
doi_str_mv 10.1126/science.abb5162
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2406302889</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2405732689</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-d3be0115563bd46c5ffae801dc0da9ab0d79d0ee23822359f18f21120ad76e2e3</originalsourceid><addsrcrecordid>eNpdkD1PwzAQhi0EoqUws1WVWFjSnn21HY-o4kuqxADMkWNfUKo0LnEC4t-T0sDAdMM976u7h7FLDnPOhVpEV1LtaG7zXHIljtiYg5GJEYDHbAyAKklByxE7i3ED0O8MnrIRiiUarfWYTZ9DVbahjjNb-1kbdqEKb6Wz1ezTflA8ZyeFrSJdDHPCXu9uX1YPyfrp_nF1s04cCtkmHnMCzqVUmPulcrIoLKXAvQNvjc3Ba-OBSGAqBEpT8LQQ_QNgvVYkCCfs-tC7a8J7R7HNtmV0VFW2ptDFTCxBIYg0NT169Q_dhK6p--v2lNQo1A-1OFCuCTE2VGS7ptza5ivjkO3VZYO6bFDXJ6ZDb5dvyf_xv67wGxIAaic</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2405732689</pqid></control><display><type>article</type><title>Solitons and topological waves</title><source>American Association for the Advancement of Science</source><source>Alma/SFX Local Collection</source><creator>Ablowitz, Mark J ; Cole, Justin T</creator><creatorcontrib>Ablowitz, Mark J ; Cole, Justin T</creatorcontrib><description>A laser-fabricated waveguide array creates a nonlinear medium that supports solitons The intense coherent emission from lasers enabled the study of light propagation in nonlinear media, which spurred many important applications. More recently, the study of electromagnetic wave propagation in periodic media, where linear band structures play an important role, has advanced in new directions. By breaking certain symmetries, such as time reversal, the medium can support so-called “topologically protected” modes that possess uncommon robustness to material defects. Theory has suggested that certain nonlinear waves can inherit the topology of associated linear waves. On page 856 of this issue, Mukherjee and Rechtsman ( 1 ) describe experiments where such nonlinear waves, called solitons, can now be observed in the bulk of photonic topological media. These localized waves exhibit cyclotronic motion as the light propagates down a specifically engineered waveguide. When a different mode is considered—one with trivial topology—the waves no longer circulate but remain essentially fixed in their initial spatial distribution.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.abb5162</identifier><identifier>PMID: 32439777</identifier><language>eng</language><publisher>United States: The American Association for the Advancement of Science</publisher><subject>Cyclotrons ; Electromagnetic radiation ; Emission analysis ; Lasers ; Solitary waves ; Spatial distribution ; Topology ; Wave propagation ; Waveguides</subject><ispartof>Science (American Association for the Advancement of Science), 2020-05, Vol.368 (6493), p.821-822</ispartof><rights>Copyright © 2020, American Association for the Advancement of Science</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c325t-d3be0115563bd46c5ffae801dc0da9ab0d79d0ee23822359f18f21120ad76e2e3</citedby><cites>FETCH-LOGICAL-c325t-d3be0115563bd46c5ffae801dc0da9ab0d79d0ee23822359f18f21120ad76e2e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2884,2885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32439777$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ablowitz, Mark J</creatorcontrib><creatorcontrib>Cole, Justin T</creatorcontrib><title>Solitons and topological waves</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>A laser-fabricated waveguide array creates a nonlinear medium that supports solitons The intense coherent emission from lasers enabled the study of light propagation in nonlinear media, which spurred many important applications. More recently, the study of electromagnetic wave propagation in periodic media, where linear band structures play an important role, has advanced in new directions. By breaking certain symmetries, such as time reversal, the medium can support so-called “topologically protected” modes that possess uncommon robustness to material defects. Theory has suggested that certain nonlinear waves can inherit the topology of associated linear waves. On page 856 of this issue, Mukherjee and Rechtsman ( 1 ) describe experiments where such nonlinear waves, called solitons, can now be observed in the bulk of photonic topological media. These localized waves exhibit cyclotronic motion as the light propagates down a specifically engineered waveguide. When a different mode is considered—one with trivial topology—the waves no longer circulate but remain essentially fixed in their initial spatial distribution.</description><subject>Cyclotrons</subject><subject>Electromagnetic radiation</subject><subject>Emission analysis</subject><subject>Lasers</subject><subject>Solitary waves</subject><subject>Spatial distribution</subject><subject>Topology</subject><subject>Wave propagation</subject><subject>Waveguides</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpdkD1PwzAQhi0EoqUws1WVWFjSnn21HY-o4kuqxADMkWNfUKo0LnEC4t-T0sDAdMM976u7h7FLDnPOhVpEV1LtaG7zXHIljtiYg5GJEYDHbAyAKklByxE7i3ED0O8MnrIRiiUarfWYTZ9DVbahjjNb-1kbdqEKb6Wz1ezTflA8ZyeFrSJdDHPCXu9uX1YPyfrp_nF1s04cCtkmHnMCzqVUmPulcrIoLKXAvQNvjc3Ba-OBSGAqBEpT8LQQ_QNgvVYkCCfs-tC7a8J7R7HNtmV0VFW2ptDFTCxBIYg0NT169Q_dhK6p--v2lNQo1A-1OFCuCTE2VGS7ptza5ivjkO3VZYO6bFDXJ6ZDb5dvyf_xv67wGxIAaic</recordid><startdate>20200522</startdate><enddate>20200522</enddate><creator>Ablowitz, Mark J</creator><creator>Cole, Justin T</creator><general>The American Association for the Advancement of Science</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20200522</creationdate><title>Solitons and topological waves</title><author>Ablowitz, Mark J ; Cole, Justin T</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-d3be0115563bd46c5ffae801dc0da9ab0d79d0ee23822359f18f21120ad76e2e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Cyclotrons</topic><topic>Electromagnetic radiation</topic><topic>Emission analysis</topic><topic>Lasers</topic><topic>Solitary waves</topic><topic>Spatial distribution</topic><topic>Topology</topic><topic>Wave propagation</topic><topic>Waveguides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ablowitz, Mark J</creatorcontrib><creatorcontrib>Cole, Justin T</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ablowitz, Mark J</au><au>Cole, Justin T</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Solitons and topological waves</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>2020-05-22</date><risdate>2020</risdate><volume>368</volume><issue>6493</issue><spage>821</spage><epage>822</epage><pages>821-822</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><abstract>A laser-fabricated waveguide array creates a nonlinear medium that supports solitons The intense coherent emission from lasers enabled the study of light propagation in nonlinear media, which spurred many important applications. More recently, the study of electromagnetic wave propagation in periodic media, where linear band structures play an important role, has advanced in new directions. By breaking certain symmetries, such as time reversal, the medium can support so-called “topologically protected” modes that possess uncommon robustness to material defects. Theory has suggested that certain nonlinear waves can inherit the topology of associated linear waves. On page 856 of this issue, Mukherjee and Rechtsman ( 1 ) describe experiments where such nonlinear waves, called solitons, can now be observed in the bulk of photonic topological media. These localized waves exhibit cyclotronic motion as the light propagates down a specifically engineered waveguide. When a different mode is considered—one with trivial topology—the waves no longer circulate but remain essentially fixed in their initial spatial distribution.</abstract><cop>United States</cop><pub>The American Association for the Advancement of Science</pub><pmid>32439777</pmid><doi>10.1126/science.abb5162</doi><tpages>2</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0036-8075
ispartof Science (American Association for the Advancement of Science), 2020-05, Vol.368 (6493), p.821-822
issn 0036-8075
1095-9203
language eng
recordid cdi_proquest_miscellaneous_2406302889
source American Association for the Advancement of Science; Alma/SFX Local Collection
subjects Cyclotrons
Electromagnetic radiation
Emission analysis
Lasers
Solitary waves
Spatial distribution
Topology
Wave propagation
Waveguides
title Solitons and topological waves
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T10%3A05%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Solitons%20and%20topological%20waves&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Ablowitz,%20Mark%20J&rft.date=2020-05-22&rft.volume=368&rft.issue=6493&rft.spage=821&rft.epage=822&rft.pages=821-822&rft.issn=0036-8075&rft.eissn=1095-9203&rft_id=info:doi/10.1126/science.abb5162&rft_dat=%3Cproquest_cross%3E2405732689%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c325t-d3be0115563bd46c5ffae801dc0da9ab0d79d0ee23822359f18f21120ad76e2e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2405732689&rft_id=info:pmid/32439777&rfr_iscdi=true