Loading…
Activating AKT1 and PIK3CA Mutations in Metastatic Castration-Resistant Prostate Cancer
Activating mutations in AKT1 and PIK3CA are undercharacterised in metastatic castration-resistant prostate cancer (mCRPC), but are linked to activation of phosphatidylinositol 3-kinase (PI3K) signalling and sensitivity to pathway inhibitors in other cancers. To determine the prevalence, genomic cont...
Saved in:
Published in: | European urology 2020-12, Vol.78 (6), p.834-844 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c428t-49789caa5e1e2caa5fcc0cec56669c155aac34c321d6128a3f4b0e651bcc58f3 |
---|---|
cites | cdi_FETCH-LOGICAL-c428t-49789caa5e1e2caa5fcc0cec56669c155aac34c321d6128a3f4b0e651bcc58f3 |
container_end_page | 844 |
container_issue | 6 |
container_start_page | 834 |
container_title | European urology |
container_volume | 78 |
creator | Herberts, Cameron Murtha, Andrew J. Fu, Simon Wang, Gang Schönlau, Elena Xue, Hui Lin, Dong Gleave, Anna Yip, Steven Angeles, Arkhjamil Hotte, Sebastien Tran, Ben North, Scott Taavitsainen, Sinja Beja, Kevin Vandekerkhove, Gillian Ritch, Elie Warner, Evan Saad, Fred Iqbal, Nayyer Nykter, Matti Gleave, Martin E. Wang, Yuzhuo Annala, Matti Chi, Kim N. Wyatt, Alexander W. |
description | Activating mutations in AKT1 and PIK3CA are undercharacterised in metastatic castration-resistant prostate cancer (mCRPC), but are linked to activation of phosphatidylinositol 3-kinase (PI3K) signalling and sensitivity to pathway inhibitors in other cancers.
To determine the prevalence, genomic context, and clinical associations of AKT1/PIK3CA activating mutations in mCRPC.
We analysed targeted cell-free DNA (cfDNA) sequencing data from 599 metastatic prostate cancer patients with circulating tumour DNA (ctDNA) content above 2%.
In patients with AKT1/PIK3CA mutations, cfDNA was subjected to PTEN intron sequencing and matched diagnostic tumour tissue was analysed when possible.
Of the patients, 6.0% (36/599) harboured somatic clonal activating mutation(s) in AKT1 or PIK3CA. Mutant allele-specific imbalance was common. Clonal mutations in mCRPC ctDNA were typically detected in pretreatment primary tissue and were consistent across serial ctDNA collections. AKT1/PIK3CA-mutant mCRPC had fewer androgen receptor (AR) gene copies than AKT1/PIK3CA wild-type mCRPC (median 4.7 vs 10.3, p = 0.003). AKT1 mutations were mutually exclusive with PTEN alterations. Patients with and without AKT1/PIK3CA mutations showed similar clinical outcomes with standard of care treatments. A heavily pretreated mCRPC patient with an AKT1 mutation experienced a 50% decline in prostate-specific antigen with Akt inhibitor (ipatasertib) monotherapy. Ipatasertib also had a marked antitumour effect in a patient-derived xenograft harbouring an AKT1 mutation. Limitations include the inability to assess AKT1/PIK3CA correlatives in ctDNA-negative patients.
AKT1/PIK3CA activating mutations are relatively common and delineate a distinct mCRPC molecular subtype with low-level AR copy gain. Clonal prevalence and evidence of mutant allele selection propose PI3K pathway dependency in selected patients. The use of cfDNA screening enables prospective clinical trials to test PI3K pathway inhibitors in this population.
Of advanced prostate cancer cases, 6% have activating mutations in the genes AKT1 or PIK3CA. These mutations can be identified using a blood test and may help select patients suitable for clinical trials of phosphatidylinositol 3-kinase inhibitors.
Somatic mutations that activate phosphatidylinositol 3-kinase pathway members AKT1 and PIK3CA define a distinct subclass of metastatic prostate cancer, and are sufficiently common to warrant biomarker-driven clinical trials. Mutation clonal prev |
doi_str_mv | 10.1016/j.eururo.2020.04.058 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2406952289</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0302283820303262</els_id><sourcerecordid>2406952289</sourcerecordid><originalsourceid>FETCH-LOGICAL-c428t-49789caa5e1e2caa5fcc0cec56669c155aac34c321d6128a3f4b0e651bcc58f3</originalsourceid><addsrcrecordid>eNp9kE9P4zAQxS3Eaimw3wChHLkkO_6XOhekqmIBAdpqVYmj5U4myFWbgJ1U4tuvQwtHTmPPezPP_jF2waHgwMvf64KGMISuECCgAFWANkdsws1U5lNdwjGbgASRCyPNCTuNcQ0AUlfyJzuRQmnODUzY8wx7v3O9b1-y2cOSZ66ts8X9g5zPsqehT0LXxsy32RP1Lo53zObpED6U_B9Fn7ptny1CN8qU1BYpnLMfjdtE-nWoZ2z552Y5v8sf_97ez2ePOSph-lxVU1Ohc5o4ibE2iICEuizLCrnWzqFUKAWvSy6Mk41aAZWarxC1aeQZu9qvfQ3d20Cxt1sfkTYb11I3RCsUlJUWwlTJqvZWTC-NgRr7GvzWhXfLwY5E7druidqRqAVlE9E0dnlIGFZbqr-GPhEmw_XeQOmbO0_BRvSUGNQ-EPa27vz3Cf8BN7WJbw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2406952289</pqid></control><display><type>article</type><title>Activating AKT1 and PIK3CA Mutations in Metastatic Castration-Resistant Prostate Cancer</title><source>ScienceDirect Freedom Collection</source><creator>Herberts, Cameron ; Murtha, Andrew J. ; Fu, Simon ; Wang, Gang ; Schönlau, Elena ; Xue, Hui ; Lin, Dong ; Gleave, Anna ; Yip, Steven ; Angeles, Arkhjamil ; Hotte, Sebastien ; Tran, Ben ; North, Scott ; Taavitsainen, Sinja ; Beja, Kevin ; Vandekerkhove, Gillian ; Ritch, Elie ; Warner, Evan ; Saad, Fred ; Iqbal, Nayyer ; Nykter, Matti ; Gleave, Martin E. ; Wang, Yuzhuo ; Annala, Matti ; Chi, Kim N. ; Wyatt, Alexander W.</creator><creatorcontrib>Herberts, Cameron ; Murtha, Andrew J. ; Fu, Simon ; Wang, Gang ; Schönlau, Elena ; Xue, Hui ; Lin, Dong ; Gleave, Anna ; Yip, Steven ; Angeles, Arkhjamil ; Hotte, Sebastien ; Tran, Ben ; North, Scott ; Taavitsainen, Sinja ; Beja, Kevin ; Vandekerkhove, Gillian ; Ritch, Elie ; Warner, Evan ; Saad, Fred ; Iqbal, Nayyer ; Nykter, Matti ; Gleave, Martin E. ; Wang, Yuzhuo ; Annala, Matti ; Chi, Kim N. ; Wyatt, Alexander W.</creatorcontrib><description>Activating mutations in AKT1 and PIK3CA are undercharacterised in metastatic castration-resistant prostate cancer (mCRPC), but are linked to activation of phosphatidylinositol 3-kinase (PI3K) signalling and sensitivity to pathway inhibitors in other cancers.
To determine the prevalence, genomic context, and clinical associations of AKT1/PIK3CA activating mutations in mCRPC.
We analysed targeted cell-free DNA (cfDNA) sequencing data from 599 metastatic prostate cancer patients with circulating tumour DNA (ctDNA) content above 2%.
In patients with AKT1/PIK3CA mutations, cfDNA was subjected to PTEN intron sequencing and matched diagnostic tumour tissue was analysed when possible.
Of the patients, 6.0% (36/599) harboured somatic clonal activating mutation(s) in AKT1 or PIK3CA. Mutant allele-specific imbalance was common. Clonal mutations in mCRPC ctDNA were typically detected in pretreatment primary tissue and were consistent across serial ctDNA collections. AKT1/PIK3CA-mutant mCRPC had fewer androgen receptor (AR) gene copies than AKT1/PIK3CA wild-type mCRPC (median 4.7 vs 10.3, p = 0.003). AKT1 mutations were mutually exclusive with PTEN alterations. Patients with and without AKT1/PIK3CA mutations showed similar clinical outcomes with standard of care treatments. A heavily pretreated mCRPC patient with an AKT1 mutation experienced a 50% decline in prostate-specific antigen with Akt inhibitor (ipatasertib) monotherapy. Ipatasertib also had a marked antitumour effect in a patient-derived xenograft harbouring an AKT1 mutation. Limitations include the inability to assess AKT1/PIK3CA correlatives in ctDNA-negative patients.
AKT1/PIK3CA activating mutations are relatively common and delineate a distinct mCRPC molecular subtype with low-level AR copy gain. Clonal prevalence and evidence of mutant allele selection propose PI3K pathway dependency in selected patients. The use of cfDNA screening enables prospective clinical trials to test PI3K pathway inhibitors in this population.
Of advanced prostate cancer cases, 6% have activating mutations in the genes AKT1 or PIK3CA. These mutations can be identified using a blood test and may help select patients suitable for clinical trials of phosphatidylinositol 3-kinase inhibitors.
Somatic mutations that activate phosphatidylinositol 3-kinase pathway members AKT1 and PIK3CA define a distinct subclass of metastatic prostate cancer, and are sufficiently common to warrant biomarker-driven clinical trials. Mutation clonal prevalence and allelic imbalance may further aid patient stratification.</description><identifier>ISSN: 0302-2838</identifier><identifier>EISSN: 1873-7560</identifier><identifier>DOI: 10.1016/j.eururo.2020.04.058</identifier><identifier>PMID: 32451180</identifier><language>eng</language><publisher>Switzerland: Elsevier B.V</publisher><subject>Castration-resistant prostate cancer ; Cell-free DNA ; Circulating tumour DNA ; Genomic sequencing ; Hotspot mutation ; Liquid biopsy ; Phosphatidylinositol 3-kinase ; Precision oncology</subject><ispartof>European urology, 2020-12, Vol.78 (6), p.834-844</ispartof><rights>2020 European Association of Urology</rights><rights>Copyright © 2020 European Association of Urology. Published by Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c428t-49789caa5e1e2caa5fcc0cec56669c155aac34c321d6128a3f4b0e651bcc58f3</citedby><cites>FETCH-LOGICAL-c428t-49789caa5e1e2caa5fcc0cec56669c155aac34c321d6128a3f4b0e651bcc58f3</cites><orcidid>0000-0002-3461-9157 ; 0000-0001-9286-1972 ; 0000-0003-1467-0075 ; 0000-0003-2399-0329 ; 0000-0003-4427-5439 ; 0000-0002-0225-4173 ; 0000-0003-3980-7656</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32451180$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Herberts, Cameron</creatorcontrib><creatorcontrib>Murtha, Andrew J.</creatorcontrib><creatorcontrib>Fu, Simon</creatorcontrib><creatorcontrib>Wang, Gang</creatorcontrib><creatorcontrib>Schönlau, Elena</creatorcontrib><creatorcontrib>Xue, Hui</creatorcontrib><creatorcontrib>Lin, Dong</creatorcontrib><creatorcontrib>Gleave, Anna</creatorcontrib><creatorcontrib>Yip, Steven</creatorcontrib><creatorcontrib>Angeles, Arkhjamil</creatorcontrib><creatorcontrib>Hotte, Sebastien</creatorcontrib><creatorcontrib>Tran, Ben</creatorcontrib><creatorcontrib>North, Scott</creatorcontrib><creatorcontrib>Taavitsainen, Sinja</creatorcontrib><creatorcontrib>Beja, Kevin</creatorcontrib><creatorcontrib>Vandekerkhove, Gillian</creatorcontrib><creatorcontrib>Ritch, Elie</creatorcontrib><creatorcontrib>Warner, Evan</creatorcontrib><creatorcontrib>Saad, Fred</creatorcontrib><creatorcontrib>Iqbal, Nayyer</creatorcontrib><creatorcontrib>Nykter, Matti</creatorcontrib><creatorcontrib>Gleave, Martin E.</creatorcontrib><creatorcontrib>Wang, Yuzhuo</creatorcontrib><creatorcontrib>Annala, Matti</creatorcontrib><creatorcontrib>Chi, Kim N.</creatorcontrib><creatorcontrib>Wyatt, Alexander W.</creatorcontrib><title>Activating AKT1 and PIK3CA Mutations in Metastatic Castration-Resistant Prostate Cancer</title><title>European urology</title><addtitle>Eur Urol</addtitle><description>Activating mutations in AKT1 and PIK3CA are undercharacterised in metastatic castration-resistant prostate cancer (mCRPC), but are linked to activation of phosphatidylinositol 3-kinase (PI3K) signalling and sensitivity to pathway inhibitors in other cancers.
To determine the prevalence, genomic context, and clinical associations of AKT1/PIK3CA activating mutations in mCRPC.
We analysed targeted cell-free DNA (cfDNA) sequencing data from 599 metastatic prostate cancer patients with circulating tumour DNA (ctDNA) content above 2%.
In patients with AKT1/PIK3CA mutations, cfDNA was subjected to PTEN intron sequencing and matched diagnostic tumour tissue was analysed when possible.
Of the patients, 6.0% (36/599) harboured somatic clonal activating mutation(s) in AKT1 or PIK3CA. Mutant allele-specific imbalance was common. Clonal mutations in mCRPC ctDNA were typically detected in pretreatment primary tissue and were consistent across serial ctDNA collections. AKT1/PIK3CA-mutant mCRPC had fewer androgen receptor (AR) gene copies than AKT1/PIK3CA wild-type mCRPC (median 4.7 vs 10.3, p = 0.003). AKT1 mutations were mutually exclusive with PTEN alterations. Patients with and without AKT1/PIK3CA mutations showed similar clinical outcomes with standard of care treatments. A heavily pretreated mCRPC patient with an AKT1 mutation experienced a 50% decline in prostate-specific antigen with Akt inhibitor (ipatasertib) monotherapy. Ipatasertib also had a marked antitumour effect in a patient-derived xenograft harbouring an AKT1 mutation. Limitations include the inability to assess AKT1/PIK3CA correlatives in ctDNA-negative patients.
AKT1/PIK3CA activating mutations are relatively common and delineate a distinct mCRPC molecular subtype with low-level AR copy gain. Clonal prevalence and evidence of mutant allele selection propose PI3K pathway dependency in selected patients. The use of cfDNA screening enables prospective clinical trials to test PI3K pathway inhibitors in this population.
Of advanced prostate cancer cases, 6% have activating mutations in the genes AKT1 or PIK3CA. These mutations can be identified using a blood test and may help select patients suitable for clinical trials of phosphatidylinositol 3-kinase inhibitors.
Somatic mutations that activate phosphatidylinositol 3-kinase pathway members AKT1 and PIK3CA define a distinct subclass of metastatic prostate cancer, and are sufficiently common to warrant biomarker-driven clinical trials. Mutation clonal prevalence and allelic imbalance may further aid patient stratification.</description><subject>Castration-resistant prostate cancer</subject><subject>Cell-free DNA</subject><subject>Circulating tumour DNA</subject><subject>Genomic sequencing</subject><subject>Hotspot mutation</subject><subject>Liquid biopsy</subject><subject>Phosphatidylinositol 3-kinase</subject><subject>Precision oncology</subject><issn>0302-2838</issn><issn>1873-7560</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kE9P4zAQxS3Eaimw3wChHLkkO_6XOhekqmIBAdpqVYmj5U4myFWbgJ1U4tuvQwtHTmPPezPP_jF2waHgwMvf64KGMISuECCgAFWANkdsws1U5lNdwjGbgASRCyPNCTuNcQ0AUlfyJzuRQmnODUzY8wx7v3O9b1-y2cOSZ66ts8X9g5zPsqehT0LXxsy32RP1Lo53zObpED6U_B9Fn7ptny1CN8qU1BYpnLMfjdtE-nWoZ2z552Y5v8sf_97ez2ePOSph-lxVU1Ohc5o4ibE2iICEuizLCrnWzqFUKAWvSy6Mk41aAZWarxC1aeQZu9qvfQ3d20Cxt1sfkTYb11I3RCsUlJUWwlTJqvZWTC-NgRr7GvzWhXfLwY5E7druidqRqAVlE9E0dnlIGFZbqr-GPhEmw_XeQOmbO0_BRvSUGNQ-EPa27vz3Cf8BN7WJbw</recordid><startdate>202012</startdate><enddate>202012</enddate><creator>Herberts, Cameron</creator><creator>Murtha, Andrew J.</creator><creator>Fu, Simon</creator><creator>Wang, Gang</creator><creator>Schönlau, Elena</creator><creator>Xue, Hui</creator><creator>Lin, Dong</creator><creator>Gleave, Anna</creator><creator>Yip, Steven</creator><creator>Angeles, Arkhjamil</creator><creator>Hotte, Sebastien</creator><creator>Tran, Ben</creator><creator>North, Scott</creator><creator>Taavitsainen, Sinja</creator><creator>Beja, Kevin</creator><creator>Vandekerkhove, Gillian</creator><creator>Ritch, Elie</creator><creator>Warner, Evan</creator><creator>Saad, Fred</creator><creator>Iqbal, Nayyer</creator><creator>Nykter, Matti</creator><creator>Gleave, Martin E.</creator><creator>Wang, Yuzhuo</creator><creator>Annala, Matti</creator><creator>Chi, Kim N.</creator><creator>Wyatt, Alexander W.</creator><general>Elsevier B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3461-9157</orcidid><orcidid>https://orcid.org/0000-0001-9286-1972</orcidid><orcidid>https://orcid.org/0000-0003-1467-0075</orcidid><orcidid>https://orcid.org/0000-0003-2399-0329</orcidid><orcidid>https://orcid.org/0000-0003-4427-5439</orcidid><orcidid>https://orcid.org/0000-0002-0225-4173</orcidid><orcidid>https://orcid.org/0000-0003-3980-7656</orcidid></search><sort><creationdate>202012</creationdate><title>Activating AKT1 and PIK3CA Mutations in Metastatic Castration-Resistant Prostate Cancer</title><author>Herberts, Cameron ; Murtha, Andrew J. ; Fu, Simon ; Wang, Gang ; Schönlau, Elena ; Xue, Hui ; Lin, Dong ; Gleave, Anna ; Yip, Steven ; Angeles, Arkhjamil ; Hotte, Sebastien ; Tran, Ben ; North, Scott ; Taavitsainen, Sinja ; Beja, Kevin ; Vandekerkhove, Gillian ; Ritch, Elie ; Warner, Evan ; Saad, Fred ; Iqbal, Nayyer ; Nykter, Matti ; Gleave, Martin E. ; Wang, Yuzhuo ; Annala, Matti ; Chi, Kim N. ; Wyatt, Alexander W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c428t-49789caa5e1e2caa5fcc0cec56669c155aac34c321d6128a3f4b0e651bcc58f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Castration-resistant prostate cancer</topic><topic>Cell-free DNA</topic><topic>Circulating tumour DNA</topic><topic>Genomic sequencing</topic><topic>Hotspot mutation</topic><topic>Liquid biopsy</topic><topic>Phosphatidylinositol 3-kinase</topic><topic>Precision oncology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Herberts, Cameron</creatorcontrib><creatorcontrib>Murtha, Andrew J.</creatorcontrib><creatorcontrib>Fu, Simon</creatorcontrib><creatorcontrib>Wang, Gang</creatorcontrib><creatorcontrib>Schönlau, Elena</creatorcontrib><creatorcontrib>Xue, Hui</creatorcontrib><creatorcontrib>Lin, Dong</creatorcontrib><creatorcontrib>Gleave, Anna</creatorcontrib><creatorcontrib>Yip, Steven</creatorcontrib><creatorcontrib>Angeles, Arkhjamil</creatorcontrib><creatorcontrib>Hotte, Sebastien</creatorcontrib><creatorcontrib>Tran, Ben</creatorcontrib><creatorcontrib>North, Scott</creatorcontrib><creatorcontrib>Taavitsainen, Sinja</creatorcontrib><creatorcontrib>Beja, Kevin</creatorcontrib><creatorcontrib>Vandekerkhove, Gillian</creatorcontrib><creatorcontrib>Ritch, Elie</creatorcontrib><creatorcontrib>Warner, Evan</creatorcontrib><creatorcontrib>Saad, Fred</creatorcontrib><creatorcontrib>Iqbal, Nayyer</creatorcontrib><creatorcontrib>Nykter, Matti</creatorcontrib><creatorcontrib>Gleave, Martin E.</creatorcontrib><creatorcontrib>Wang, Yuzhuo</creatorcontrib><creatorcontrib>Annala, Matti</creatorcontrib><creatorcontrib>Chi, Kim N.</creatorcontrib><creatorcontrib>Wyatt, Alexander W.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>European urology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Herberts, Cameron</au><au>Murtha, Andrew J.</au><au>Fu, Simon</au><au>Wang, Gang</au><au>Schönlau, Elena</au><au>Xue, Hui</au><au>Lin, Dong</au><au>Gleave, Anna</au><au>Yip, Steven</au><au>Angeles, Arkhjamil</au><au>Hotte, Sebastien</au><au>Tran, Ben</au><au>North, Scott</au><au>Taavitsainen, Sinja</au><au>Beja, Kevin</au><au>Vandekerkhove, Gillian</au><au>Ritch, Elie</au><au>Warner, Evan</au><au>Saad, Fred</au><au>Iqbal, Nayyer</au><au>Nykter, Matti</au><au>Gleave, Martin E.</au><au>Wang, Yuzhuo</au><au>Annala, Matti</au><au>Chi, Kim N.</au><au>Wyatt, Alexander W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Activating AKT1 and PIK3CA Mutations in Metastatic Castration-Resistant Prostate Cancer</atitle><jtitle>European urology</jtitle><addtitle>Eur Urol</addtitle><date>2020-12</date><risdate>2020</risdate><volume>78</volume><issue>6</issue><spage>834</spage><epage>844</epage><pages>834-844</pages><issn>0302-2838</issn><eissn>1873-7560</eissn><abstract>Activating mutations in AKT1 and PIK3CA are undercharacterised in metastatic castration-resistant prostate cancer (mCRPC), but are linked to activation of phosphatidylinositol 3-kinase (PI3K) signalling and sensitivity to pathway inhibitors in other cancers.
To determine the prevalence, genomic context, and clinical associations of AKT1/PIK3CA activating mutations in mCRPC.
We analysed targeted cell-free DNA (cfDNA) sequencing data from 599 metastatic prostate cancer patients with circulating tumour DNA (ctDNA) content above 2%.
In patients with AKT1/PIK3CA mutations, cfDNA was subjected to PTEN intron sequencing and matched diagnostic tumour tissue was analysed when possible.
Of the patients, 6.0% (36/599) harboured somatic clonal activating mutation(s) in AKT1 or PIK3CA. Mutant allele-specific imbalance was common. Clonal mutations in mCRPC ctDNA were typically detected in pretreatment primary tissue and were consistent across serial ctDNA collections. AKT1/PIK3CA-mutant mCRPC had fewer androgen receptor (AR) gene copies than AKT1/PIK3CA wild-type mCRPC (median 4.7 vs 10.3, p = 0.003). AKT1 mutations were mutually exclusive with PTEN alterations. Patients with and without AKT1/PIK3CA mutations showed similar clinical outcomes with standard of care treatments. A heavily pretreated mCRPC patient with an AKT1 mutation experienced a 50% decline in prostate-specific antigen with Akt inhibitor (ipatasertib) monotherapy. Ipatasertib also had a marked antitumour effect in a patient-derived xenograft harbouring an AKT1 mutation. Limitations include the inability to assess AKT1/PIK3CA correlatives in ctDNA-negative patients.
AKT1/PIK3CA activating mutations are relatively common and delineate a distinct mCRPC molecular subtype with low-level AR copy gain. Clonal prevalence and evidence of mutant allele selection propose PI3K pathway dependency in selected patients. The use of cfDNA screening enables prospective clinical trials to test PI3K pathway inhibitors in this population.
Of advanced prostate cancer cases, 6% have activating mutations in the genes AKT1 or PIK3CA. These mutations can be identified using a blood test and may help select patients suitable for clinical trials of phosphatidylinositol 3-kinase inhibitors.
Somatic mutations that activate phosphatidylinositol 3-kinase pathway members AKT1 and PIK3CA define a distinct subclass of metastatic prostate cancer, and are sufficiently common to warrant biomarker-driven clinical trials. Mutation clonal prevalence and allelic imbalance may further aid patient stratification.</abstract><cop>Switzerland</cop><pub>Elsevier B.V</pub><pmid>32451180</pmid><doi>10.1016/j.eururo.2020.04.058</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-3461-9157</orcidid><orcidid>https://orcid.org/0000-0001-9286-1972</orcidid><orcidid>https://orcid.org/0000-0003-1467-0075</orcidid><orcidid>https://orcid.org/0000-0003-2399-0329</orcidid><orcidid>https://orcid.org/0000-0003-4427-5439</orcidid><orcidid>https://orcid.org/0000-0002-0225-4173</orcidid><orcidid>https://orcid.org/0000-0003-3980-7656</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0302-2838 |
ispartof | European urology, 2020-12, Vol.78 (6), p.834-844 |
issn | 0302-2838 1873-7560 |
language | eng |
recordid | cdi_proquest_miscellaneous_2406952289 |
source | ScienceDirect Freedom Collection |
subjects | Castration-resistant prostate cancer Cell-free DNA Circulating tumour DNA Genomic sequencing Hotspot mutation Liquid biopsy Phosphatidylinositol 3-kinase Precision oncology |
title | Activating AKT1 and PIK3CA Mutations in Metastatic Castration-Resistant Prostate Cancer |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T13%3A38%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Activating%20AKT1%20and%20PIK3CA%20Mutations%20in%20Metastatic%20Castration-Resistant%20Prostate%20Cancer&rft.jtitle=European%20urology&rft.au=Herberts,%20Cameron&rft.date=2020-12&rft.volume=78&rft.issue=6&rft.spage=834&rft.epage=844&rft.pages=834-844&rft.issn=0302-2838&rft.eissn=1873-7560&rft_id=info:doi/10.1016/j.eururo.2020.04.058&rft_dat=%3Cproquest_cross%3E2406952289%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c428t-49789caa5e1e2caa5fcc0cec56669c155aac34c321d6128a3f4b0e651bcc58f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2406952289&rft_id=info:pmid/32451180&rfr_iscdi=true |