Loading…
C-C and C-X coupling reactions of unactivated alkyl electrophiles using copper catalysis
Transition metal-catalysed cross-coupling reactions are widely used for construction of carbon-carbon and carbon-heteroatom bonds. However, compared to aryl or alkenyl electrophiles, the cross-coupling of unactivated alkyl electrophiles containing β hydrogens remains a challenge. Over the past few y...
Saved in:
Published in: | Chemical Society reviews 2020-11, Vol.49 (22), p.836-864 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Transition metal-catalysed cross-coupling reactions are widely used for construction of carbon-carbon and carbon-heteroatom bonds. However, compared to aryl or alkenyl electrophiles, the cross-coupling of unactivated alkyl electrophiles containing β hydrogens remains a challenge. Over the past few years, the use of suitable ligands such as bulky phosphines or N-heterocyclic carbenes (NHCs) has enabled reactions of unactivated alkyl electrophiles not only limited to the traditional cross-coupling with Grignard reagents, but also including a diverse range of organic transformations
via
either S
N
2 or radical pathways. This review provides a comprehensive overview of the recent development in copper-catalysed C-C, C-N, C-B, C-Si and C-F bond-forming reactions using unactivated alkyl electrophiles.
Copper catalysts enable cross-coupling reactions of unactivated alkyl electrophiles to generate C-C and C-X bonds. |
---|---|
ISSN: | 0306-0012 1460-4744 |
DOI: | 10.1039/d0cs00316f |