Loading…

Control of Hydraulic Load on Bacterioplankton Diversity in Cascade Hydropower Reservoirs, Southwest China

Hydroelectric reservoirs are highly regulated ecosystems, where the understanding on bacterioplankton has been very limited so far. In view of significant changes in river hydrological conditions by dam construction, hydraulic load (i.e., the ratio of mean water depth to water retention time) was as...

Full description

Saved in:
Bibliographic Details
Published in:Microbial ecology 2020-10, Vol.80 (3), p.537-545
Main Authors: Yang, Meiling, Shi, Jie, Wang, Baoli, Xiao, Jing, Li, Wanzhu, Liu, Cong-Qiang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Hydroelectric reservoirs are highly regulated ecosystems, where the understanding on bacterioplankton has been very limited so far. In view of significant changes in river hydrological conditions by dam construction, hydraulic load (i.e., the ratio of mean water depth to water retention time) was assumed to control bacterioplankton diversity in cascading hydropower reservoirs. To evaluate this hypothesis, we investigated bacterioplankton composition and diversity using high-throughput sequencing and related environmental variables in eleven reservoirs on the Wujiang River, Southwest China. Our results showed a decrease of bacterioplankton diversity index with an increase of reservoir hydraulic load. This is because hydraulic load governs dissolved oxygen variation in the water column, which is a key factor shaping bacterioplankton composition in these hydroelectric reservoirs. In contrast, bacterioplankton abundance was mainly affected by nutrient-related environmental factors. Therefore, from a hydrological perspective, hydraulic load is a decisive factor for the bacterioplankton diversity in the hydroelectric reservoirs. This study can improve the understanding of reservoir bacterial ecology, and the empirical relationship between hydraulic load and bacterioplankton diversity index will help to quantitatively evaluate ecological effects of river damming.
ISSN:0095-3628
1432-184X
DOI:10.1007/s00248-020-01523-8