Loading…
Mechanical properties of native and acellular temporal muscle fascia for surgical reconstruction and computational modelling purposes
The temporal muscle fascia (TMF) is a widely used graft material and of interest for computational simulations of the temporomandibular joint as well as computational and physical human head models in general. However, reliable biomechanical properties of the TMF are lacking to date. This study prov...
Saved in:
Published in: | Journal of the mechanical behavior of biomedical materials 2020-08, Vol.108, p.103833-103833, Article 103833 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The temporal muscle fascia (TMF) is a widely used graft material and of interest for computational simulations of the temporomandibular joint as well as computational and physical human head models in general. However, reliable biomechanical properties of the TMF are lacking to date. This study provides tensile data of 52 TMFs at an age range of 18 to 94 years. It further investigates, if acellular fascia scaffolds differ from native counterparts in their biomechanical behaviour. Native TMF has a median elastic modulus of 26.2 MPa (acellular: 24.5 MPa), an ultimate tensile strength of 2.9 MPa (acellular: 2.1 MPa), a maximum force of 12.6 N (acellular: 9.9 N) and a strain at failure of 14.1% (acellular: 14.8%). No significant difference was found regarding the properties of native and acellular samples. Elastic modulus and the ultimate tensile strength increased with age but only in the acellular group (p |
---|---|
ISSN: | 1751-6161 1878-0180 |
DOI: | 10.1016/j.jmbbm.2020.103833 |