Loading…
Taoren-dahuang herb pair reduces eicosanoid metabolite shifts by regulating ADORA2A degradation activity in ischaemia/reperfusion injury rats
Peach kernel (taoren: TR) is the dried mature seed of peach, Prunus persica (L.) Batsch, which belongs to the Rosaceae family. Rhubarb (dahuang: DH) is the dried root and rhizome of rhubarb (Rheum palmatum L., Rheum officinale Baill., or Rheum tanguticum Maxim. ex Balf.). TR-DH (TD) is a traditional...
Saved in:
Published in: | Journal of ethnopharmacology 2020-10, Vol.260, p.113014-113014, Article 113014 |
---|---|
Main Authors: | , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Peach kernel (taoren: TR) is the dried mature seed of peach, Prunus persica (L.) Batsch, which belongs to the Rosaceae family. Rhubarb (dahuang: DH) is the dried root and rhizome of rhubarb (Rheum palmatum L., Rheum officinale Baill., or Rheum tanguticum Maxim. ex Balf.). TR-DH (TD) is a traditional Chinese medicine herb pair that promotes blood circulation and removes blood stasis. In recent years, TD has shown definite benefits in the cardio-cerebrovascular system, but its specific mechanism is not very clear.
The purpose of this study was to explore the mechanism by which TD affects cerebral ischaemia/reperfusion (I/R) injury and to optimize the mixture ratio.
The affected metabolic pathways in rat brain tissues after I/R were analysed by network pharmacology and verified with animal pharmacological experiments.
TD had a certain therapeutic effect on cerebral I/R injury. TD with a TR:DH ratio of 1:1 had the best therapeutic effect. Metabolic pathway analysis showed that the protective mechanism of TD against I/R injury involves mainly regulation of brain tissue ADORA2A protein levels and action on the arachidonic acid (AA) pathway. Conclusion: TD can ameliorate cerebral I/R injury by regulating ADORA2A degradation in the AA metabolic pathway to attenuate AA metabolic dysfunction and the inflammatory response.
[Display omitted] |
---|---|
ISSN: | 0378-8741 1872-7573 |
DOI: | 10.1016/j.jep.2020.113014 |