Loading…
Homeostatic mechanisms may shape the type and duration of oscillatory modulation
The intricate interplay of neuromodulators, like acetylcholine, with homeostasis is well known. The interplay between oscillatory modulation and homeostasis is not. We studied oscillatory modulation and homeostasis for the first time using a simplified model of hippocampus. We report a paradoxical r...
Saved in:
Published in: | Journal of neurophysiology 2020-07, Vol.124 (1), p.168-177 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The intricate interplay of neuromodulators, like acetylcholine, with homeostasis is well known. The interplay between oscillatory modulation and homeostasis is not. We studied oscillatory modulation and homeostasis for the first time using a simplified model of hippocampus. We report a paradoxical result: Ca-mediated homeostasis causes AMPAergic oscillations to become effectively inhibitory. This result, along with other new observations, means homeostasis might be just as complex and important for oscillations as it is for other neuromodulators.
Neural oscillations are observed ubiquitously in the mammalian brain, but their stability is known to be rather variable. Some oscillations are tonic and last for seconds or even minutes. Other oscillations appear as unstable bursts. Likewise, some oscillations rely on excitatory AMPAergic synapses, but others are GABAergic and inhibitory. Why this diversity exists is not clear. We hypothesized Ca
2+
-dependent homeostasis could be important in finding an explanation. We tested this hypothesis in a highly simplified model of hippocampal neurons. In this model homeostasis profoundly alters the modulatory effect of neural oscillations. Under homeostasis, tonic AMPAergic oscillations actually decrease excitability and desynchronize firing. Tonic oscillations that are synaptically GABAergic—like those in real hippocampus—don’t provoke a homeostatic response, however. If our simple model is correct, homeostasis can explain why the theta rhythm in the hippocampus is synaptically inhibitory: GABA has little to no intrinsic homeostatic response and so can preserve the pyramidal cell’s natural dynamic range. Based on these results we speculate that homeostasis may explain why AMPAergic oscillations in cortex, and in hippocampus, often appear as bursts. Bursts do not interact with the slow homeostatic time constant and so retain their normal excitatory effect.
NEW & NOTEWORTHY The intricate interplay of neuromodulators, like acetylcholine, with homeostasis is well known. The interplay between oscillatory modulation and homeostasis is not. We studied oscillatory modulation and homeostasis for the first time using a simplified model of hippocampus. We report a paradoxical result: Ca-mediated homeostasis causes AMPAergic oscillations to become effectively inhibitory. This result, along with other new observations, means homeostasis might be just as complex and important for oscillations as it is for other neuromodulators. |
---|---|
ISSN: | 0022-3077 1522-1598 |
DOI: | 10.1152/jn.00119.2020 |