Loading…
Dual-Regulation Strategy to Improve Anchoring and Conversion of Polysulfides in Lithium–Sulfur Batteries
The sluggish reaction kinetics at the cathode/electrolyte interface of lithium–sulfur (Li–S) batteries limits their commercialization. Herein, we show that a dual-regulation system of iron phthalocyanine (FePc) and octafluoronaphthalene (OFN) decorated on graphene (Gh), denoted as Gh/FePc+OFN, accel...
Saved in:
Published in: | ACS nano 2020-06, Vol.14 (6), p.7538-7551 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a376t-7b80f91ff5851090c4e8791e4c7835ea9778c29f0b6b1f82303e583bda161a593 |
---|---|
cites | cdi_FETCH-LOGICAL-a376t-7b80f91ff5851090c4e8791e4c7835ea9778c29f0b6b1f82303e583bda161a593 |
container_end_page | 7551 |
container_issue | 6 |
container_start_page | 7538 |
container_title | ACS nano |
container_volume | 14 |
creator | Zhou, Suya Yang, Shuo Ding, Xinwei Lai, Yuchong Nie, Huagui Zhang, Yonggui Chan, Dan Duan, Huan Huang, Shaoming Yang, Zhi |
description | The sluggish reaction kinetics at the cathode/electrolyte interface of lithium–sulfur (Li–S) batteries limits their commercialization. Herein, we show that a dual-regulation system of iron phthalocyanine (FePc) and octafluoronaphthalene (OFN) decorated on graphene (Gh), denoted as Gh/FePc+OFN, accelerates the interfacial reaction kinetics of lithium polysulfides (LiPSs). Multiple in situ spectroscopy techniques and ex situ X-ray photoelectron spectroscopy combined with density functional theory calculations demonstrate that FePc acts as an efficient anchor and scissor for the LiPSs through Fe···S coordination, mainly facilitating their liquid–liquid transformation, whereas OFN enables Li-bond interaction with the LiPSs, accelerating the kinetics of the liquid–solid nucleation and growth of Li2S. This dual-regulation system promotes the smooth conversion reaction of sulfur, thereby improving the battery performance. A Gh/FePc+OFN-based Li–S cathode delivered an ultrahigh initial capacity of 1604 mAh g–1 at 0.2 C, with an ultralow capacity decay rate of 0.055% per cycle at 1 C over 1000 cycles. |
doi_str_mv | 10.1021/acsnano.0c03403 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2409646658</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2409646658</sourcerecordid><originalsourceid>FETCH-LOGICAL-a376t-7b80f91ff5851090c4e8791e4c7835ea9778c29f0b6b1f82303e583bda161a593</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWKtnrzkKsm2y2c1mj7V-FQqKVfC2ZLeTNmWbaD4Kvfkf_If-Ere0ePM0w8z7DO-8CF1SMqAkpUPZeCONHZCGsIywI9SjJeMJEfz9-K_P6Sk6835FSF6IgvfQ6jbKNnmBRWxl0NbgWXAywGKLg8WT9YezG8Aj0yyt02aBpZnjsTUbcH4ntgo_23brY6v0HDzWBk91WOq4_vn6nnXT6PCNDAGcBn-OTpRsPVwcah-93d-9jh-T6dPDZDyaJpIVPCRFLYgqqVJ555aUpMlAFCWFrCkEy0GWRSGatFSk5jVVImWEQS5YPZeUU5mXrI-u9nc7858RfKjW2jfQttKAjb5KM1LyjPMO6qPhXto4670DVX04vZZuW1FS7VKtDqlWh1Q74npPdItqZaMz3Sv_qn8BYO18-A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2409646658</pqid></control><display><type>article</type><title>Dual-Regulation Strategy to Improve Anchoring and Conversion of Polysulfides in Lithium–Sulfur Batteries</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Zhou, Suya ; Yang, Shuo ; Ding, Xinwei ; Lai, Yuchong ; Nie, Huagui ; Zhang, Yonggui ; Chan, Dan ; Duan, Huan ; Huang, Shaoming ; Yang, Zhi</creator><creatorcontrib>Zhou, Suya ; Yang, Shuo ; Ding, Xinwei ; Lai, Yuchong ; Nie, Huagui ; Zhang, Yonggui ; Chan, Dan ; Duan, Huan ; Huang, Shaoming ; Yang, Zhi</creatorcontrib><description>The sluggish reaction kinetics at the cathode/electrolyte interface of lithium–sulfur (Li–S) batteries limits their commercialization. Herein, we show that a dual-regulation system of iron phthalocyanine (FePc) and octafluoronaphthalene (OFN) decorated on graphene (Gh), denoted as Gh/FePc+OFN, accelerates the interfacial reaction kinetics of lithium polysulfides (LiPSs). Multiple in situ spectroscopy techniques and ex situ X-ray photoelectron spectroscopy combined with density functional theory calculations demonstrate that FePc acts as an efficient anchor and scissor for the LiPSs through Fe···S coordination, mainly facilitating their liquid–liquid transformation, whereas OFN enables Li-bond interaction with the LiPSs, accelerating the kinetics of the liquid–solid nucleation and growth of Li2S. This dual-regulation system promotes the smooth conversion reaction of sulfur, thereby improving the battery performance. A Gh/FePc+OFN-based Li–S cathode delivered an ultrahigh initial capacity of 1604 mAh g–1 at 0.2 C, with an ultralow capacity decay rate of 0.055% per cycle at 1 C over 1000 cycles.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/acsnano.0c03403</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>ACS nano, 2020-06, Vol.14 (6), p.7538-7551</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a376t-7b80f91ff5851090c4e8791e4c7835ea9778c29f0b6b1f82303e583bda161a593</citedby><cites>FETCH-LOGICAL-a376t-7b80f91ff5851090c4e8791e4c7835ea9778c29f0b6b1f82303e583bda161a593</cites><orcidid>0000-0003-0242-1143 ; 0000-0002-9265-5041</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Zhou, Suya</creatorcontrib><creatorcontrib>Yang, Shuo</creatorcontrib><creatorcontrib>Ding, Xinwei</creatorcontrib><creatorcontrib>Lai, Yuchong</creatorcontrib><creatorcontrib>Nie, Huagui</creatorcontrib><creatorcontrib>Zhang, Yonggui</creatorcontrib><creatorcontrib>Chan, Dan</creatorcontrib><creatorcontrib>Duan, Huan</creatorcontrib><creatorcontrib>Huang, Shaoming</creatorcontrib><creatorcontrib>Yang, Zhi</creatorcontrib><title>Dual-Regulation Strategy to Improve Anchoring and Conversion of Polysulfides in Lithium–Sulfur Batteries</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>The sluggish reaction kinetics at the cathode/electrolyte interface of lithium–sulfur (Li–S) batteries limits their commercialization. Herein, we show that a dual-regulation system of iron phthalocyanine (FePc) and octafluoronaphthalene (OFN) decorated on graphene (Gh), denoted as Gh/FePc+OFN, accelerates the interfacial reaction kinetics of lithium polysulfides (LiPSs). Multiple in situ spectroscopy techniques and ex situ X-ray photoelectron spectroscopy combined with density functional theory calculations demonstrate that FePc acts as an efficient anchor and scissor for the LiPSs through Fe···S coordination, mainly facilitating their liquid–liquid transformation, whereas OFN enables Li-bond interaction with the LiPSs, accelerating the kinetics of the liquid–solid nucleation and growth of Li2S. This dual-regulation system promotes the smooth conversion reaction of sulfur, thereby improving the battery performance. A Gh/FePc+OFN-based Li–S cathode delivered an ultrahigh initial capacity of 1604 mAh g–1 at 0.2 C, with an ultralow capacity decay rate of 0.055% per cycle at 1 C over 1000 cycles.</description><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LAzEQhoMoWKtnrzkKsm2y2c1mj7V-FQqKVfC2ZLeTNmWbaD4Kvfkf_If-Ere0ePM0w8z7DO-8CF1SMqAkpUPZeCONHZCGsIywI9SjJeMJEfz9-K_P6Sk6835FSF6IgvfQ6jbKNnmBRWxl0NbgWXAywGKLg8WT9YezG8Aj0yyt02aBpZnjsTUbcH4ntgo_23brY6v0HDzWBk91WOq4_vn6nnXT6PCNDAGcBn-OTpRsPVwcah-93d-9jh-T6dPDZDyaJpIVPCRFLYgqqVJ555aUpMlAFCWFrCkEy0GWRSGatFSk5jVVImWEQS5YPZeUU5mXrI-u9nc7858RfKjW2jfQttKAjb5KM1LyjPMO6qPhXto4670DVX04vZZuW1FS7VKtDqlWh1Q74npPdItqZaMz3Sv_qn8BYO18-A</recordid><startdate>20200623</startdate><enddate>20200623</enddate><creator>Zhou, Suya</creator><creator>Yang, Shuo</creator><creator>Ding, Xinwei</creator><creator>Lai, Yuchong</creator><creator>Nie, Huagui</creator><creator>Zhang, Yonggui</creator><creator>Chan, Dan</creator><creator>Duan, Huan</creator><creator>Huang, Shaoming</creator><creator>Yang, Zhi</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0242-1143</orcidid><orcidid>https://orcid.org/0000-0002-9265-5041</orcidid></search><sort><creationdate>20200623</creationdate><title>Dual-Regulation Strategy to Improve Anchoring and Conversion of Polysulfides in Lithium–Sulfur Batteries</title><author>Zhou, Suya ; Yang, Shuo ; Ding, Xinwei ; Lai, Yuchong ; Nie, Huagui ; Zhang, Yonggui ; Chan, Dan ; Duan, Huan ; Huang, Shaoming ; Yang, Zhi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a376t-7b80f91ff5851090c4e8791e4c7835ea9778c29f0b6b1f82303e583bda161a593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Suya</creatorcontrib><creatorcontrib>Yang, Shuo</creatorcontrib><creatorcontrib>Ding, Xinwei</creatorcontrib><creatorcontrib>Lai, Yuchong</creatorcontrib><creatorcontrib>Nie, Huagui</creatorcontrib><creatorcontrib>Zhang, Yonggui</creatorcontrib><creatorcontrib>Chan, Dan</creatorcontrib><creatorcontrib>Duan, Huan</creatorcontrib><creatorcontrib>Huang, Shaoming</creatorcontrib><creatorcontrib>Yang, Zhi</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Suya</au><au>Yang, Shuo</au><au>Ding, Xinwei</au><au>Lai, Yuchong</au><au>Nie, Huagui</au><au>Zhang, Yonggui</au><au>Chan, Dan</au><au>Duan, Huan</au><au>Huang, Shaoming</au><au>Yang, Zhi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dual-Regulation Strategy to Improve Anchoring and Conversion of Polysulfides in Lithium–Sulfur Batteries</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2020-06-23</date><risdate>2020</risdate><volume>14</volume><issue>6</issue><spage>7538</spage><epage>7551</epage><pages>7538-7551</pages><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>The sluggish reaction kinetics at the cathode/electrolyte interface of lithium–sulfur (Li–S) batteries limits their commercialization. Herein, we show that a dual-regulation system of iron phthalocyanine (FePc) and octafluoronaphthalene (OFN) decorated on graphene (Gh), denoted as Gh/FePc+OFN, accelerates the interfacial reaction kinetics of lithium polysulfides (LiPSs). Multiple in situ spectroscopy techniques and ex situ X-ray photoelectron spectroscopy combined with density functional theory calculations demonstrate that FePc acts as an efficient anchor and scissor for the LiPSs through Fe···S coordination, mainly facilitating their liquid–liquid transformation, whereas OFN enables Li-bond interaction with the LiPSs, accelerating the kinetics of the liquid–solid nucleation and growth of Li2S. This dual-regulation system promotes the smooth conversion reaction of sulfur, thereby improving the battery performance. A Gh/FePc+OFN-based Li–S cathode delivered an ultrahigh initial capacity of 1604 mAh g–1 at 0.2 C, with an ultralow capacity decay rate of 0.055% per cycle at 1 C over 1000 cycles.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsnano.0c03403</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-0242-1143</orcidid><orcidid>https://orcid.org/0000-0002-9265-5041</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1936-0851 |
ispartof | ACS nano, 2020-06, Vol.14 (6), p.7538-7551 |
issn | 1936-0851 1936-086X |
language | eng |
recordid | cdi_proquest_miscellaneous_2409646658 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
title | Dual-Regulation Strategy to Improve Anchoring and Conversion of Polysulfides in Lithium–Sulfur Batteries |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T06%3A22%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dual-Regulation%20Strategy%20to%20Improve%20Anchoring%20and%20Conversion%20of%20Polysulfides%20in%20Lithium%E2%80%93Sulfur%20Batteries&rft.jtitle=ACS%20nano&rft.au=Zhou,%20Suya&rft.date=2020-06-23&rft.volume=14&rft.issue=6&rft.spage=7538&rft.epage=7551&rft.pages=7538-7551&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/acsnano.0c03403&rft_dat=%3Cproquest_cross%3E2409646658%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a376t-7b80f91ff5851090c4e8791e4c7835ea9778c29f0b6b1f82303e583bda161a593%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2409646658&rft_id=info:pmid/&rfr_iscdi=true |