Loading…

Dual-Regulation Strategy to Improve Anchoring and Conversion of Polysulfides in Lithium–Sulfur Batteries

The sluggish reaction kinetics at the cathode/electrolyte interface of lithium–sulfur (Li–S) batteries limits their commercialization. Herein, we show that a dual-regulation system of iron phthalocyanine (FePc) and octafluoronaphthalene (OFN) decorated on graphene (Gh), denoted as Gh/FePc+OFN, accel...

Full description

Saved in:
Bibliographic Details
Published in:ACS nano 2020-06, Vol.14 (6), p.7538-7551
Main Authors: Zhou, Suya, Yang, Shuo, Ding, Xinwei, Lai, Yuchong, Nie, Huagui, Zhang, Yonggui, Chan, Dan, Duan, Huan, Huang, Shaoming, Yang, Zhi
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a376t-7b80f91ff5851090c4e8791e4c7835ea9778c29f0b6b1f82303e583bda161a593
cites cdi_FETCH-LOGICAL-a376t-7b80f91ff5851090c4e8791e4c7835ea9778c29f0b6b1f82303e583bda161a593
container_end_page 7551
container_issue 6
container_start_page 7538
container_title ACS nano
container_volume 14
creator Zhou, Suya
Yang, Shuo
Ding, Xinwei
Lai, Yuchong
Nie, Huagui
Zhang, Yonggui
Chan, Dan
Duan, Huan
Huang, Shaoming
Yang, Zhi
description The sluggish reaction kinetics at the cathode/electrolyte interface of lithium–sulfur (Li–S) batteries limits their commercialization. Herein, we show that a dual-regulation system of iron phthalocyanine (FePc) and octafluoronaphthalene (OFN) decorated on graphene (Gh), denoted as Gh/FePc+OFN, accelerates the interfacial reaction kinetics of lithium polysulfides (LiPSs). Multiple in situ spectroscopy techniques and ex situ X-ray photoelectron spectroscopy combined with density functional theory calculations demonstrate that FePc acts as an efficient anchor and scissor for the LiPSs through Fe···S coordination, mainly facilitating their liquid–liquid transformation, whereas OFN enables Li-bond interaction with the LiPSs, accelerating the kinetics of the liquid–solid nucleation and growth of Li2S. This dual-regulation system promotes the smooth conversion reaction of sulfur, thereby improving the battery performance. A Gh/FePc+OFN-based Li–S cathode delivered an ultrahigh initial capacity of 1604 mAh g–1 at 0.2 C, with an ultralow capacity decay rate of 0.055% per cycle at 1 C over 1000 cycles.
doi_str_mv 10.1021/acsnano.0c03403
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2409646658</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2409646658</sourcerecordid><originalsourceid>FETCH-LOGICAL-a376t-7b80f91ff5851090c4e8791e4c7835ea9778c29f0b6b1f82303e583bda161a593</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWKtnrzkKsm2y2c1mj7V-FQqKVfC2ZLeTNmWbaD4Kvfkf_If-Ere0ePM0w8z7DO-8CF1SMqAkpUPZeCONHZCGsIywI9SjJeMJEfz9-K_P6Sk6835FSF6IgvfQ6jbKNnmBRWxl0NbgWXAywGKLg8WT9YezG8Aj0yyt02aBpZnjsTUbcH4ntgo_23brY6v0HDzWBk91WOq4_vn6nnXT6PCNDAGcBn-OTpRsPVwcah-93d-9jh-T6dPDZDyaJpIVPCRFLYgqqVJ555aUpMlAFCWFrCkEy0GWRSGatFSk5jVVImWEQS5YPZeUU5mXrI-u9nc7858RfKjW2jfQttKAjb5KM1LyjPMO6qPhXto4670DVX04vZZuW1FS7VKtDqlWh1Q74npPdItqZaMz3Sv_qn8BYO18-A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2409646658</pqid></control><display><type>article</type><title>Dual-Regulation Strategy to Improve Anchoring and Conversion of Polysulfides in Lithium–Sulfur Batteries</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Zhou, Suya ; Yang, Shuo ; Ding, Xinwei ; Lai, Yuchong ; Nie, Huagui ; Zhang, Yonggui ; Chan, Dan ; Duan, Huan ; Huang, Shaoming ; Yang, Zhi</creator><creatorcontrib>Zhou, Suya ; Yang, Shuo ; Ding, Xinwei ; Lai, Yuchong ; Nie, Huagui ; Zhang, Yonggui ; Chan, Dan ; Duan, Huan ; Huang, Shaoming ; Yang, Zhi</creatorcontrib><description>The sluggish reaction kinetics at the cathode/electrolyte interface of lithium–sulfur (Li–S) batteries limits their commercialization. Herein, we show that a dual-regulation system of iron phthalocyanine (FePc) and octafluoronaphthalene (OFN) decorated on graphene (Gh), denoted as Gh/FePc+OFN, accelerates the interfacial reaction kinetics of lithium polysulfides (LiPSs). Multiple in situ spectroscopy techniques and ex situ X-ray photoelectron spectroscopy combined with density functional theory calculations demonstrate that FePc acts as an efficient anchor and scissor for the LiPSs through Fe···S coordination, mainly facilitating their liquid–liquid transformation, whereas OFN enables Li-bond interaction with the LiPSs, accelerating the kinetics of the liquid–solid nucleation and growth of Li2S. This dual-regulation system promotes the smooth conversion reaction of sulfur, thereby improving the battery performance. A Gh/FePc+OFN-based Li–S cathode delivered an ultrahigh initial capacity of 1604 mAh g–1 at 0.2 C, with an ultralow capacity decay rate of 0.055% per cycle at 1 C over 1000 cycles.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/acsnano.0c03403</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>ACS nano, 2020-06, Vol.14 (6), p.7538-7551</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a376t-7b80f91ff5851090c4e8791e4c7835ea9778c29f0b6b1f82303e583bda161a593</citedby><cites>FETCH-LOGICAL-a376t-7b80f91ff5851090c4e8791e4c7835ea9778c29f0b6b1f82303e583bda161a593</cites><orcidid>0000-0003-0242-1143 ; 0000-0002-9265-5041</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Zhou, Suya</creatorcontrib><creatorcontrib>Yang, Shuo</creatorcontrib><creatorcontrib>Ding, Xinwei</creatorcontrib><creatorcontrib>Lai, Yuchong</creatorcontrib><creatorcontrib>Nie, Huagui</creatorcontrib><creatorcontrib>Zhang, Yonggui</creatorcontrib><creatorcontrib>Chan, Dan</creatorcontrib><creatorcontrib>Duan, Huan</creatorcontrib><creatorcontrib>Huang, Shaoming</creatorcontrib><creatorcontrib>Yang, Zhi</creatorcontrib><title>Dual-Regulation Strategy to Improve Anchoring and Conversion of Polysulfides in Lithium–Sulfur Batteries</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>The sluggish reaction kinetics at the cathode/electrolyte interface of lithium–sulfur (Li–S) batteries limits their commercialization. Herein, we show that a dual-regulation system of iron phthalocyanine (FePc) and octafluoronaphthalene (OFN) decorated on graphene (Gh), denoted as Gh/FePc+OFN, accelerates the interfacial reaction kinetics of lithium polysulfides (LiPSs). Multiple in situ spectroscopy techniques and ex situ X-ray photoelectron spectroscopy combined with density functional theory calculations demonstrate that FePc acts as an efficient anchor and scissor for the LiPSs through Fe···S coordination, mainly facilitating their liquid–liquid transformation, whereas OFN enables Li-bond interaction with the LiPSs, accelerating the kinetics of the liquid–solid nucleation and growth of Li2S. This dual-regulation system promotes the smooth conversion reaction of sulfur, thereby improving the battery performance. A Gh/FePc+OFN-based Li–S cathode delivered an ultrahigh initial capacity of 1604 mAh g–1 at 0.2 C, with an ultralow capacity decay rate of 0.055% per cycle at 1 C over 1000 cycles.</description><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LAzEQhoMoWKtnrzkKsm2y2c1mj7V-FQqKVfC2ZLeTNmWbaD4Kvfkf_If-Ere0ePM0w8z7DO-8CF1SMqAkpUPZeCONHZCGsIywI9SjJeMJEfz9-K_P6Sk6835FSF6IgvfQ6jbKNnmBRWxl0NbgWXAywGKLg8WT9YezG8Aj0yyt02aBpZnjsTUbcH4ntgo_23brY6v0HDzWBk91WOq4_vn6nnXT6PCNDAGcBn-OTpRsPVwcah-93d-9jh-T6dPDZDyaJpIVPCRFLYgqqVJ555aUpMlAFCWFrCkEy0GWRSGatFSk5jVVImWEQS5YPZeUU5mXrI-u9nc7858RfKjW2jfQttKAjb5KM1LyjPMO6qPhXto4670DVX04vZZuW1FS7VKtDqlWh1Q74npPdItqZaMz3Sv_qn8BYO18-A</recordid><startdate>20200623</startdate><enddate>20200623</enddate><creator>Zhou, Suya</creator><creator>Yang, Shuo</creator><creator>Ding, Xinwei</creator><creator>Lai, Yuchong</creator><creator>Nie, Huagui</creator><creator>Zhang, Yonggui</creator><creator>Chan, Dan</creator><creator>Duan, Huan</creator><creator>Huang, Shaoming</creator><creator>Yang, Zhi</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0242-1143</orcidid><orcidid>https://orcid.org/0000-0002-9265-5041</orcidid></search><sort><creationdate>20200623</creationdate><title>Dual-Regulation Strategy to Improve Anchoring and Conversion of Polysulfides in Lithium–Sulfur Batteries</title><author>Zhou, Suya ; Yang, Shuo ; Ding, Xinwei ; Lai, Yuchong ; Nie, Huagui ; Zhang, Yonggui ; Chan, Dan ; Duan, Huan ; Huang, Shaoming ; Yang, Zhi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a376t-7b80f91ff5851090c4e8791e4c7835ea9778c29f0b6b1f82303e583bda161a593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Suya</creatorcontrib><creatorcontrib>Yang, Shuo</creatorcontrib><creatorcontrib>Ding, Xinwei</creatorcontrib><creatorcontrib>Lai, Yuchong</creatorcontrib><creatorcontrib>Nie, Huagui</creatorcontrib><creatorcontrib>Zhang, Yonggui</creatorcontrib><creatorcontrib>Chan, Dan</creatorcontrib><creatorcontrib>Duan, Huan</creatorcontrib><creatorcontrib>Huang, Shaoming</creatorcontrib><creatorcontrib>Yang, Zhi</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Suya</au><au>Yang, Shuo</au><au>Ding, Xinwei</au><au>Lai, Yuchong</au><au>Nie, Huagui</au><au>Zhang, Yonggui</au><au>Chan, Dan</au><au>Duan, Huan</au><au>Huang, Shaoming</au><au>Yang, Zhi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dual-Regulation Strategy to Improve Anchoring and Conversion of Polysulfides in Lithium–Sulfur Batteries</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2020-06-23</date><risdate>2020</risdate><volume>14</volume><issue>6</issue><spage>7538</spage><epage>7551</epage><pages>7538-7551</pages><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>The sluggish reaction kinetics at the cathode/electrolyte interface of lithium–sulfur (Li–S) batteries limits their commercialization. Herein, we show that a dual-regulation system of iron phthalocyanine (FePc) and octafluoronaphthalene (OFN) decorated on graphene (Gh), denoted as Gh/FePc+OFN, accelerates the interfacial reaction kinetics of lithium polysulfides (LiPSs). Multiple in situ spectroscopy techniques and ex situ X-ray photoelectron spectroscopy combined with density functional theory calculations demonstrate that FePc acts as an efficient anchor and scissor for the LiPSs through Fe···S coordination, mainly facilitating their liquid–liquid transformation, whereas OFN enables Li-bond interaction with the LiPSs, accelerating the kinetics of the liquid–solid nucleation and growth of Li2S. This dual-regulation system promotes the smooth conversion reaction of sulfur, thereby improving the battery performance. A Gh/FePc+OFN-based Li–S cathode delivered an ultrahigh initial capacity of 1604 mAh g–1 at 0.2 C, with an ultralow capacity decay rate of 0.055% per cycle at 1 C over 1000 cycles.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsnano.0c03403</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-0242-1143</orcidid><orcidid>https://orcid.org/0000-0002-9265-5041</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1936-0851
ispartof ACS nano, 2020-06, Vol.14 (6), p.7538-7551
issn 1936-0851
1936-086X
language eng
recordid cdi_proquest_miscellaneous_2409646658
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
title Dual-Regulation Strategy to Improve Anchoring and Conversion of Polysulfides in Lithium–Sulfur Batteries
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T06%3A22%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dual-Regulation%20Strategy%20to%20Improve%20Anchoring%20and%20Conversion%20of%20Polysulfides%20in%20Lithium%E2%80%93Sulfur%20Batteries&rft.jtitle=ACS%20nano&rft.au=Zhou,%20Suya&rft.date=2020-06-23&rft.volume=14&rft.issue=6&rft.spage=7538&rft.epage=7551&rft.pages=7538-7551&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/acsnano.0c03403&rft_dat=%3Cproquest_cross%3E2409646658%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a376t-7b80f91ff5851090c4e8791e4c7835ea9778c29f0b6b1f82303e583bda161a593%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2409646658&rft_id=info:pmid/&rfr_iscdi=true