Loading…
Dissociative photoionization of 1,3‐dioxolane: We need six channels to fit the elephant
The dissociative photoionization of 1,3‐dioxolane was studied by photoelectron photoion coincidence (PEPICO) spectroscopy in the photon energy range of 9.5–13.5 eV. Our statistical thermodynamics model shows that a total of six dissociation channels are involved in the formation of three fragment io...
Saved in:
Published in: | Journal of mass spectrometry. 2020-09, Vol.55 (9), p.e4522-n/a |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3972-b25d006beb7e7fea4296699471c94f5218faebc468ade76dc1fc22518c4b34e63 |
---|---|
cites | cdi_FETCH-LOGICAL-c3972-b25d006beb7e7fea4296699471c94f5218faebc468ade76dc1fc22518c4b34e63 |
container_end_page | n/a |
container_issue | 9 |
container_start_page | e4522 |
container_title | Journal of mass spectrometry. |
container_volume | 55 |
creator | Weidner, Peter Voronova, Krisztina Bodi, Andras Sztáray, Bálint |
description | The dissociative photoionization of 1,3‐dioxolane was studied by photoelectron photoion coincidence (PEPICO) spectroscopy in the photon energy range of 9.5–13.5 eV. Our statistical thermodynamics model shows that a total of six dissociation channels are involved in the formation of three fragment ions, namely, C3H5O2+ (m/z 73), C2H5O+ (m/z 45), and C2H4O+ (m/z 44), with two channels contributing to the formation of each. By comparing the results of ab initio quantum chemical calculations to the experimentally derived appearance energies of the fragment ions, the most likely mechanisms for these unimolecular dissociation reactions are proposed, including a description of the relevant parts of the potential energy surface. |
doi_str_mv | 10.1002/jms.4522 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2410707273</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2440458125</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3972-b25d006beb7e7fea4296699471c94f5218faebc468ade76dc1fc22518c4b34e63</originalsourceid><addsrcrecordid>eNp1kMtKxDAYhYMoOI6CjxBw48KOSZomrTvxLiMuVMRVaNM_TIZOU5uOzrjyEXxGn8TUEQTB1X_h43DOQWiXkhElhB1OZ37EE8bW0ICSTERZmqbr_S5FlFDJN9GW91NCSJZxMUBPp9Z7p23e2RfAzcR1zrravoXb1dgZTA_iz_eP0rqFq_IajvAj4BqgxN4usJ7kdQ2Vx53Dxna4mwCGCprw7rbRhskrDzs_c4gezs_uTy6j8e3F1cnxONJxJllUsKQkRBRQSJAGcs4yIYI3SXXGTcJoanIoNBdpXoIUpaZGM5bQVPMi5iDiIdpf6Tate56D79TMeg1V79bNvWI8ZCeSyTige3_QqZu3dXAXKE54klKW_Arq1nnfglFNa2d5u1SUqL5jFTpWfccBjVboq61g-S-nrm_uvvkvjPR9mw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2440458125</pqid></control><display><type>article</type><title>Dissociative photoionization of 1,3‐dioxolane: We need six channels to fit the elephant</title><source>Wiley</source><creator>Weidner, Peter ; Voronova, Krisztina ; Bodi, Andras ; Sztáray, Bálint</creator><creatorcontrib>Weidner, Peter ; Voronova, Krisztina ; Bodi, Andras ; Sztáray, Bálint</creatorcontrib><description>The dissociative photoionization of 1,3‐dioxolane was studied by photoelectron photoion coincidence (PEPICO) spectroscopy in the photon energy range of 9.5–13.5 eV. Our statistical thermodynamics model shows that a total of six dissociation channels are involved in the formation of three fragment ions, namely, C3H5O2+ (m/z 73), C2H5O+ (m/z 45), and C2H4O+ (m/z 44), with two channels contributing to the formation of each. By comparing the results of ab initio quantum chemical calculations to the experimentally derived appearance energies of the fragment ions, the most likely mechanisms for these unimolecular dissociation reactions are proposed, including a description of the relevant parts of the potential energy surface.</description><identifier>ISSN: 1076-5174</identifier><identifier>EISSN: 1096-9888</identifier><identifier>DOI: 10.1002/jms.4522</identifier><language>eng</language><publisher>Bognor Regis: Wiley Subscription Services, Inc</publisher><subject>1,3‐dioxolane ; Analytical methods ; Channels ; Dissociation ; Elephants ; gas phase ; Ions ; Mathematical models ; PEPICO ; Photochemical reactions ; Photoelectrons ; Photoionization ; Potential energy ; Quantum chemistry ; Spectroscopy ; Statistical thermodynamics ; synchrotron radiation ; unimolecular dissociation ; vacuum ultraviolet</subject><ispartof>Journal of mass spectrometry., 2020-09, Vol.55 (9), p.e4522-n/a</ispartof><rights>2020 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3972-b25d006beb7e7fea4296699471c94f5218faebc468ade76dc1fc22518c4b34e63</citedby><cites>FETCH-LOGICAL-c3972-b25d006beb7e7fea4296699471c94f5218faebc468ade76dc1fc22518c4b34e63</cites><orcidid>0000-0002-0333-0000 ; 0000-0003-2252-9143 ; 0000-0003-1261-3886 ; 0000-0003-2742-1051</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Weidner, Peter</creatorcontrib><creatorcontrib>Voronova, Krisztina</creatorcontrib><creatorcontrib>Bodi, Andras</creatorcontrib><creatorcontrib>Sztáray, Bálint</creatorcontrib><title>Dissociative photoionization of 1,3‐dioxolane: We need six channels to fit the elephant</title><title>Journal of mass spectrometry.</title><description>The dissociative photoionization of 1,3‐dioxolane was studied by photoelectron photoion coincidence (PEPICO) spectroscopy in the photon energy range of 9.5–13.5 eV. Our statistical thermodynamics model shows that a total of six dissociation channels are involved in the formation of three fragment ions, namely, C3H5O2+ (m/z 73), C2H5O+ (m/z 45), and C2H4O+ (m/z 44), with two channels contributing to the formation of each. By comparing the results of ab initio quantum chemical calculations to the experimentally derived appearance energies of the fragment ions, the most likely mechanisms for these unimolecular dissociation reactions are proposed, including a description of the relevant parts of the potential energy surface.</description><subject>1,3‐dioxolane</subject><subject>Analytical methods</subject><subject>Channels</subject><subject>Dissociation</subject><subject>Elephants</subject><subject>gas phase</subject><subject>Ions</subject><subject>Mathematical models</subject><subject>PEPICO</subject><subject>Photochemical reactions</subject><subject>Photoelectrons</subject><subject>Photoionization</subject><subject>Potential energy</subject><subject>Quantum chemistry</subject><subject>Spectroscopy</subject><subject>Statistical thermodynamics</subject><subject>synchrotron radiation</subject><subject>unimolecular dissociation</subject><subject>vacuum ultraviolet</subject><issn>1076-5174</issn><issn>1096-9888</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kMtKxDAYhYMoOI6CjxBw48KOSZomrTvxLiMuVMRVaNM_TIZOU5uOzrjyEXxGn8TUEQTB1X_h43DOQWiXkhElhB1OZ37EE8bW0ICSTERZmqbr_S5FlFDJN9GW91NCSJZxMUBPp9Z7p23e2RfAzcR1zrravoXb1dgZTA_iz_eP0rqFq_IajvAj4BqgxN4usJ7kdQ2Vx53Dxna4mwCGCprw7rbRhskrDzs_c4gezs_uTy6j8e3F1cnxONJxJllUsKQkRBRQSJAGcs4yIYI3SXXGTcJoanIoNBdpXoIUpaZGM5bQVPMi5iDiIdpf6Tate56D79TMeg1V79bNvWI8ZCeSyTige3_QqZu3dXAXKE54klKW_Arq1nnfglFNa2d5u1SUqL5jFTpWfccBjVboq61g-S-nrm_uvvkvjPR9mw</recordid><startdate>202009</startdate><enddate>202009</enddate><creator>Weidner, Peter</creator><creator>Voronova, Krisztina</creator><creator>Bodi, Andras</creator><creator>Sztáray, Bálint</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>7U7</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H97</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0333-0000</orcidid><orcidid>https://orcid.org/0000-0003-2252-9143</orcidid><orcidid>https://orcid.org/0000-0003-1261-3886</orcidid><orcidid>https://orcid.org/0000-0003-2742-1051</orcidid></search><sort><creationdate>202009</creationdate><title>Dissociative photoionization of 1,3‐dioxolane: We need six channels to fit the elephant</title><author>Weidner, Peter ; Voronova, Krisztina ; Bodi, Andras ; Sztáray, Bálint</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3972-b25d006beb7e7fea4296699471c94f5218faebc468ade76dc1fc22518c4b34e63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>1,3‐dioxolane</topic><topic>Analytical methods</topic><topic>Channels</topic><topic>Dissociation</topic><topic>Elephants</topic><topic>gas phase</topic><topic>Ions</topic><topic>Mathematical models</topic><topic>PEPICO</topic><topic>Photochemical reactions</topic><topic>Photoelectrons</topic><topic>Photoionization</topic><topic>Potential energy</topic><topic>Quantum chemistry</topic><topic>Spectroscopy</topic><topic>Statistical thermodynamics</topic><topic>synchrotron radiation</topic><topic>unimolecular dissociation</topic><topic>vacuum ultraviolet</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Weidner, Peter</creatorcontrib><creatorcontrib>Voronova, Krisztina</creatorcontrib><creatorcontrib>Bodi, Andras</creatorcontrib><creatorcontrib>Sztáray, Bálint</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of mass spectrometry.</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Weidner, Peter</au><au>Voronova, Krisztina</au><au>Bodi, Andras</au><au>Sztáray, Bálint</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dissociative photoionization of 1,3‐dioxolane: We need six channels to fit the elephant</atitle><jtitle>Journal of mass spectrometry.</jtitle><date>2020-09</date><risdate>2020</risdate><volume>55</volume><issue>9</issue><spage>e4522</spage><epage>n/a</epage><pages>e4522-n/a</pages><issn>1076-5174</issn><eissn>1096-9888</eissn><abstract>The dissociative photoionization of 1,3‐dioxolane was studied by photoelectron photoion coincidence (PEPICO) spectroscopy in the photon energy range of 9.5–13.5 eV. Our statistical thermodynamics model shows that a total of six dissociation channels are involved in the formation of three fragment ions, namely, C3H5O2+ (m/z 73), C2H5O+ (m/z 45), and C2H4O+ (m/z 44), with two channels contributing to the formation of each. By comparing the results of ab initio quantum chemical calculations to the experimentally derived appearance energies of the fragment ions, the most likely mechanisms for these unimolecular dissociation reactions are proposed, including a description of the relevant parts of the potential energy surface.</abstract><cop>Bognor Regis</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/jms.4522</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-0333-0000</orcidid><orcidid>https://orcid.org/0000-0003-2252-9143</orcidid><orcidid>https://orcid.org/0000-0003-1261-3886</orcidid><orcidid>https://orcid.org/0000-0003-2742-1051</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1076-5174 |
ispartof | Journal of mass spectrometry., 2020-09, Vol.55 (9), p.e4522-n/a |
issn | 1076-5174 1096-9888 |
language | eng |
recordid | cdi_proquest_miscellaneous_2410707273 |
source | Wiley |
subjects | 1,3‐dioxolane Analytical methods Channels Dissociation Elephants gas phase Ions Mathematical models PEPICO Photochemical reactions Photoelectrons Photoionization Potential energy Quantum chemistry Spectroscopy Statistical thermodynamics synchrotron radiation unimolecular dissociation vacuum ultraviolet |
title | Dissociative photoionization of 1,3‐dioxolane: We need six channels to fit the elephant |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T01%3A49%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dissociative%20photoionization%20of%201,3%E2%80%90dioxolane:%20We%20need%20six%20channels%20to%20fit%20the%20elephant&rft.jtitle=Journal%20of%20mass%20spectrometry.&rft.au=Weidner,%20Peter&rft.date=2020-09&rft.volume=55&rft.issue=9&rft.spage=e4522&rft.epage=n/a&rft.pages=e4522-n/a&rft.issn=1076-5174&rft.eissn=1096-9888&rft_id=info:doi/10.1002/jms.4522&rft_dat=%3Cproquest_cross%3E2440458125%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3972-b25d006beb7e7fea4296699471c94f5218faebc468ade76dc1fc22518c4b34e63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2440458125&rft_id=info:pmid/&rfr_iscdi=true |