Loading…

Dissociative photoionization of 1,3‐dioxolane: We need six channels to fit the elephant

The dissociative photoionization of 1,3‐dioxolane was studied by photoelectron photoion coincidence (PEPICO) spectroscopy in the photon energy range of 9.5–13.5 eV. Our statistical thermodynamics model shows that a total of six dissociation channels are involved in the formation of three fragment io...

Full description

Saved in:
Bibliographic Details
Published in:Journal of mass spectrometry. 2020-09, Vol.55 (9), p.e4522-n/a
Main Authors: Weidner, Peter, Voronova, Krisztina, Bodi, Andras, Sztáray, Bálint
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3972-b25d006beb7e7fea4296699471c94f5218faebc468ade76dc1fc22518c4b34e63
cites cdi_FETCH-LOGICAL-c3972-b25d006beb7e7fea4296699471c94f5218faebc468ade76dc1fc22518c4b34e63
container_end_page n/a
container_issue 9
container_start_page e4522
container_title Journal of mass spectrometry.
container_volume 55
creator Weidner, Peter
Voronova, Krisztina
Bodi, Andras
Sztáray, Bálint
description The dissociative photoionization of 1,3‐dioxolane was studied by photoelectron photoion coincidence (PEPICO) spectroscopy in the photon energy range of 9.5–13.5 eV. Our statistical thermodynamics model shows that a total of six dissociation channels are involved in the formation of three fragment ions, namely, C3H5O2+ (m/z 73), C2H5O+ (m/z 45), and C2H4O+ (m/z 44), with two channels contributing to the formation of each. By comparing the results of ab initio quantum chemical calculations to the experimentally derived appearance energies of the fragment ions, the most likely mechanisms for these unimolecular dissociation reactions are proposed, including a description of the relevant parts of the potential energy surface.
doi_str_mv 10.1002/jms.4522
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2410707273</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2440458125</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3972-b25d006beb7e7fea4296699471c94f5218faebc468ade76dc1fc22518c4b34e63</originalsourceid><addsrcrecordid>eNp1kMtKxDAYhYMoOI6CjxBw48KOSZomrTvxLiMuVMRVaNM_TIZOU5uOzrjyEXxGn8TUEQTB1X_h43DOQWiXkhElhB1OZ37EE8bW0ICSTERZmqbr_S5FlFDJN9GW91NCSJZxMUBPp9Z7p23e2RfAzcR1zrravoXb1dgZTA_iz_eP0rqFq_IajvAj4BqgxN4usJ7kdQ2Vx53Dxna4mwCGCprw7rbRhskrDzs_c4gezs_uTy6j8e3F1cnxONJxJllUsKQkRBRQSJAGcs4yIYI3SXXGTcJoanIoNBdpXoIUpaZGM5bQVPMi5iDiIdpf6Tate56D79TMeg1V79bNvWI8ZCeSyTige3_QqZu3dXAXKE54klKW_Arq1nnfglFNa2d5u1SUqL5jFTpWfccBjVboq61g-S-nrm_uvvkvjPR9mw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2440458125</pqid></control><display><type>article</type><title>Dissociative photoionization of 1,3‐dioxolane: We need six channels to fit the elephant</title><source>Wiley</source><creator>Weidner, Peter ; Voronova, Krisztina ; Bodi, Andras ; Sztáray, Bálint</creator><creatorcontrib>Weidner, Peter ; Voronova, Krisztina ; Bodi, Andras ; Sztáray, Bálint</creatorcontrib><description>The dissociative photoionization of 1,3‐dioxolane was studied by photoelectron photoion coincidence (PEPICO) spectroscopy in the photon energy range of 9.5–13.5 eV. Our statistical thermodynamics model shows that a total of six dissociation channels are involved in the formation of three fragment ions, namely, C3H5O2+ (m/z 73), C2H5O+ (m/z 45), and C2H4O+ (m/z 44), with two channels contributing to the formation of each. By comparing the results of ab initio quantum chemical calculations to the experimentally derived appearance energies of the fragment ions, the most likely mechanisms for these unimolecular dissociation reactions are proposed, including a description of the relevant parts of the potential energy surface.</description><identifier>ISSN: 1076-5174</identifier><identifier>EISSN: 1096-9888</identifier><identifier>DOI: 10.1002/jms.4522</identifier><language>eng</language><publisher>Bognor Regis: Wiley Subscription Services, Inc</publisher><subject>1,3‐dioxolane ; Analytical methods ; Channels ; Dissociation ; Elephants ; gas phase ; Ions ; Mathematical models ; PEPICO ; Photochemical reactions ; Photoelectrons ; Photoionization ; Potential energy ; Quantum chemistry ; Spectroscopy ; Statistical thermodynamics ; synchrotron radiation ; unimolecular dissociation ; vacuum ultraviolet</subject><ispartof>Journal of mass spectrometry., 2020-09, Vol.55 (9), p.e4522-n/a</ispartof><rights>2020 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3972-b25d006beb7e7fea4296699471c94f5218faebc468ade76dc1fc22518c4b34e63</citedby><cites>FETCH-LOGICAL-c3972-b25d006beb7e7fea4296699471c94f5218faebc468ade76dc1fc22518c4b34e63</cites><orcidid>0000-0002-0333-0000 ; 0000-0003-2252-9143 ; 0000-0003-1261-3886 ; 0000-0003-2742-1051</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Weidner, Peter</creatorcontrib><creatorcontrib>Voronova, Krisztina</creatorcontrib><creatorcontrib>Bodi, Andras</creatorcontrib><creatorcontrib>Sztáray, Bálint</creatorcontrib><title>Dissociative photoionization of 1,3‐dioxolane: We need six channels to fit the elephant</title><title>Journal of mass spectrometry.</title><description>The dissociative photoionization of 1,3‐dioxolane was studied by photoelectron photoion coincidence (PEPICO) spectroscopy in the photon energy range of 9.5–13.5 eV. Our statistical thermodynamics model shows that a total of six dissociation channels are involved in the formation of three fragment ions, namely, C3H5O2+ (m/z 73), C2H5O+ (m/z 45), and C2H4O+ (m/z 44), with two channels contributing to the formation of each. By comparing the results of ab initio quantum chemical calculations to the experimentally derived appearance energies of the fragment ions, the most likely mechanisms for these unimolecular dissociation reactions are proposed, including a description of the relevant parts of the potential energy surface.</description><subject>1,3‐dioxolane</subject><subject>Analytical methods</subject><subject>Channels</subject><subject>Dissociation</subject><subject>Elephants</subject><subject>gas phase</subject><subject>Ions</subject><subject>Mathematical models</subject><subject>PEPICO</subject><subject>Photochemical reactions</subject><subject>Photoelectrons</subject><subject>Photoionization</subject><subject>Potential energy</subject><subject>Quantum chemistry</subject><subject>Spectroscopy</subject><subject>Statistical thermodynamics</subject><subject>synchrotron radiation</subject><subject>unimolecular dissociation</subject><subject>vacuum ultraviolet</subject><issn>1076-5174</issn><issn>1096-9888</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kMtKxDAYhYMoOI6CjxBw48KOSZomrTvxLiMuVMRVaNM_TIZOU5uOzrjyEXxGn8TUEQTB1X_h43DOQWiXkhElhB1OZ37EE8bW0ICSTERZmqbr_S5FlFDJN9GW91NCSJZxMUBPp9Z7p23e2RfAzcR1zrravoXb1dgZTA_iz_eP0rqFq_IajvAj4BqgxN4usJ7kdQ2Vx53Dxna4mwCGCprw7rbRhskrDzs_c4gezs_uTy6j8e3F1cnxONJxJllUsKQkRBRQSJAGcs4yIYI3SXXGTcJoanIoNBdpXoIUpaZGM5bQVPMi5iDiIdpf6Tate56D79TMeg1V79bNvWI8ZCeSyTige3_QqZu3dXAXKE54klKW_Arq1nnfglFNa2d5u1SUqL5jFTpWfccBjVboq61g-S-nrm_uvvkvjPR9mw</recordid><startdate>202009</startdate><enddate>202009</enddate><creator>Weidner, Peter</creator><creator>Voronova, Krisztina</creator><creator>Bodi, Andras</creator><creator>Sztáray, Bálint</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>7U7</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H97</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0333-0000</orcidid><orcidid>https://orcid.org/0000-0003-2252-9143</orcidid><orcidid>https://orcid.org/0000-0003-1261-3886</orcidid><orcidid>https://orcid.org/0000-0003-2742-1051</orcidid></search><sort><creationdate>202009</creationdate><title>Dissociative photoionization of 1,3‐dioxolane: We need six channels to fit the elephant</title><author>Weidner, Peter ; Voronova, Krisztina ; Bodi, Andras ; Sztáray, Bálint</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3972-b25d006beb7e7fea4296699471c94f5218faebc468ade76dc1fc22518c4b34e63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>1,3‐dioxolane</topic><topic>Analytical methods</topic><topic>Channels</topic><topic>Dissociation</topic><topic>Elephants</topic><topic>gas phase</topic><topic>Ions</topic><topic>Mathematical models</topic><topic>PEPICO</topic><topic>Photochemical reactions</topic><topic>Photoelectrons</topic><topic>Photoionization</topic><topic>Potential energy</topic><topic>Quantum chemistry</topic><topic>Spectroscopy</topic><topic>Statistical thermodynamics</topic><topic>synchrotron radiation</topic><topic>unimolecular dissociation</topic><topic>vacuum ultraviolet</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Weidner, Peter</creatorcontrib><creatorcontrib>Voronova, Krisztina</creatorcontrib><creatorcontrib>Bodi, Andras</creatorcontrib><creatorcontrib>Sztáray, Bálint</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of mass spectrometry.</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Weidner, Peter</au><au>Voronova, Krisztina</au><au>Bodi, Andras</au><au>Sztáray, Bálint</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dissociative photoionization of 1,3‐dioxolane: We need six channels to fit the elephant</atitle><jtitle>Journal of mass spectrometry.</jtitle><date>2020-09</date><risdate>2020</risdate><volume>55</volume><issue>9</issue><spage>e4522</spage><epage>n/a</epage><pages>e4522-n/a</pages><issn>1076-5174</issn><eissn>1096-9888</eissn><abstract>The dissociative photoionization of 1,3‐dioxolane was studied by photoelectron photoion coincidence (PEPICO) spectroscopy in the photon energy range of 9.5–13.5 eV. Our statistical thermodynamics model shows that a total of six dissociation channels are involved in the formation of three fragment ions, namely, C3H5O2+ (m/z 73), C2H5O+ (m/z 45), and C2H4O+ (m/z 44), with two channels contributing to the formation of each. By comparing the results of ab initio quantum chemical calculations to the experimentally derived appearance energies of the fragment ions, the most likely mechanisms for these unimolecular dissociation reactions are proposed, including a description of the relevant parts of the potential energy surface.</abstract><cop>Bognor Regis</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/jms.4522</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-0333-0000</orcidid><orcidid>https://orcid.org/0000-0003-2252-9143</orcidid><orcidid>https://orcid.org/0000-0003-1261-3886</orcidid><orcidid>https://orcid.org/0000-0003-2742-1051</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1076-5174
ispartof Journal of mass spectrometry., 2020-09, Vol.55 (9), p.e4522-n/a
issn 1076-5174
1096-9888
language eng
recordid cdi_proquest_miscellaneous_2410707273
source Wiley
subjects 1,3‐dioxolane
Analytical methods
Channels
Dissociation
Elephants
gas phase
Ions
Mathematical models
PEPICO
Photochemical reactions
Photoelectrons
Photoionization
Potential energy
Quantum chemistry
Spectroscopy
Statistical thermodynamics
synchrotron radiation
unimolecular dissociation
vacuum ultraviolet
title Dissociative photoionization of 1,3‐dioxolane: We need six channels to fit the elephant
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T01%3A49%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dissociative%20photoionization%20of%201,3%E2%80%90dioxolane:%20We%20need%20six%20channels%20to%20fit%20the%20elephant&rft.jtitle=Journal%20of%20mass%20spectrometry.&rft.au=Weidner,%20Peter&rft.date=2020-09&rft.volume=55&rft.issue=9&rft.spage=e4522&rft.epage=n/a&rft.pages=e4522-n/a&rft.issn=1076-5174&rft.eissn=1096-9888&rft_id=info:doi/10.1002/jms.4522&rft_dat=%3Cproquest_cross%3E2440458125%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3972-b25d006beb7e7fea4296699471c94f5218faebc468ade76dc1fc22518c4b34e63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2440458125&rft_id=info:pmid/&rfr_iscdi=true