Loading…
Water-Based PEDOT:Nafion Dispersion for Organic Bioelectronics
The water dispersion of the conductive polymer poly(3,4-ethylenedioxythiophene):poly(styrenesulfonic acid) (PEDOT:PSS) is one of the most used material precursors in organic electronics also thanks to its industrial production. There is a growing interest for conductive polymers that could be alte...
Saved in:
Published in: | ACS applied materials & interfaces 2020-07, Vol.12 (26), p.29807-29817, Article acsami.0c06538 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The water dispersion of the conductive polymer poly(3,4-ethylenedioxythiophene):poly(styrenesulfonic acid) (PEDOT:PSS) is one of the most used material precursors in organic electronics also thanks to its industrial production. There is a growing interest for conductive polymers that could be alternative surrogates or replace PEDOT:PSS in some applications. A recent study by our group compared electrodeposited PEDOT:Nafion vs PEDOT:PSS in the use for neural recordings. Here, we introduce an easy and reproducible synthetic protocol to prepare a water dispersion of PEDOT:Nafion. The conductivity of the pristine material is on the order of 2 S cm–1 and was improved up to ≈6 S cm–1 upon treatment with ethylene glycol. Faster ion transfer was assessed by electrochemical impedance spectroscopy (EIS), and, interestingly, an improved adhesion was observed for coatings of the new PEDOT:Nafion dispersion on glass substrates, even without the addition of the silane cross-linker needed for PEDOT:PSS. As proof of concept, we demonstrate the use of this novel water dispersion of PEDOT:Nafion in three different organic electronic device architectures, namely, an organic electrochemical transistor (OECT), a memristor, and an artificial synapse. |
---|---|
ISSN: | 1944-8244 1944-8252 |
DOI: | 10.1021/acsami.0c06538 |