Loading…

Contact Architecture Controls Conductance in Monolayer Devices

The architecture of electrically contacting the self-assembled monolayer (SAM) of an organophosphonate has a profound effect on a device where the SAM serves as an intermolecular conductive channel in the plane of the substrate. Nanotransfer printing (nTP) enabled the construction of top-contact and...

Full description

Saved in:
Bibliographic Details
Published in:ACS applied materials & interfaces 2020-06, Vol.12 (25), p.28446-28450
Main Authors: Saller, Kai B, Liao, Kung-Ching, Riedl, Hubert, Lugli, Paolo, Koblmüller, Gregor, Schwartz, Jeffrey, Tornow, Marc
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The architecture of electrically contacting the self-assembled monolayer (SAM) of an organophosphonate has a profound effect on a device where the SAM serves as an intermolecular conductive channel in the plane of the substrate. Nanotransfer printing (nTP) enabled the construction of top-contact and bottom-contact architectures; contacts were composed of 13 nm thin metal films that were separated by a ca. 20 nm gap. Top-contact devices were fabricated by assembling the SAM across the entire surface of an insulating substrate and then applying the patterned metallic electrodes by nTP; bottom-contact ones were fabricated by nTP of the electrode pattern onto the substrate before the SAM was grown in the patterned nanogaps. SAMs were prepared from (9,10-di­(naphthalen-2-yl)­anthracen-2-yl)­phosphonate; here, the naphthyl groups extend laterally from the anthracenylphosphonate backbone. Significantly, top-contact devices supported current that was about 3 orders of magnitude greater than that for comparable bottom-contact devices and that was at least 100,000 times greater than for a control device devoid of a SAM (at 0.5 V bias). These large differences in conductance between top- and bottom-contact architectures are discussed in consideration of differential contact-to-SAM geometries and, hence, resistances.
ISSN:1944-8244
1944-8252
DOI:10.1021/acsami.0c08902