Loading…
Molecular Orbitals Support Energy-Stabilizing “Bonding” Nature of Bader’s Bond Paths
Our MO-based findings proved a bonding nature of each density bridge (DB, or a bond path with an associated critical point, CP) on a Bader molecular graph. A DB pinpoints universal physical and net energy-lowering processes that might, but do not have to, lead to a chemical bond formation. Physical...
Saved in:
Published in: | The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory Molecules, spectroscopy, kinetics, environment, & general theory, 2020-07, Vol.124 (27), p.5523-5533 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Our MO-based findings proved a bonding nature of each density bridge (DB, or a bond path with an associated critical point, CP) on a Bader molecular graph. A DB pinpoints universal physical and net energy-lowering processes that might, but do not have to, lead to a chemical bond formation. Physical processes leading to electron density (ED) concentration in internuclear regions of three distinctively different homopolar H,H atom-pairs as well as classical C–C and C–H covalent bonds were found to be exactly the same. Notably, properties of individual MOs are internuclear-region specific as they (i) concentrate, deplete, or do not contribute to ED at a CP and (ii) delocalize electron-pairs through either in- (positive) or out-of-phase (negative) interference. Importantly, dominance of a net ED concentration and positive e – -pairs delocalization made by a number of σ-bonding MOs is a common feature at a CP. This feature was found for the covalently bonded atoms as well as homopolar H,H atom-pairs investigated. The latter refer to a DB-free H,H atom-pair of the bay in the twisted biphenyl (Bph) and DB-linked H,H atom-pairs (i) in cubic Li4H4, where each H atom is involved in three highly repulsive interactions (over +80 kcal/mol), and (ii) in a weak attractive interaction when sterically clashing in the planar Bph. |
---|---|
ISSN: | 1089-5639 1520-5215 |
DOI: | 10.1021/acs.jpca.0c02234 |