Loading…

Reconfigurable T‐junction DNA Origami

DNA self‐assembly allows the construction of nanometre‐scale structures and devices. Structures with thousands of unique components are routinely assembled in good yield. Experimental progress has been rapid, based largely on empirical design rules. Herein, we demonstrate a DNA origami technique des...

Full description

Saved in:
Bibliographic Details
Published in:Angewandte Chemie International Edition 2020-09, Vol.59 (37), p.15942-15946
Main Authors: Young, Katherine G., Najafi, Behnam, Sant, William M., Contera, Sonia, Louis, Ard A., Doye, Jonathan P. K., Turberfield, Andrew J., Bath, Jonathan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4271-e40d5d2e7a5340fc46f0ba2488c0143451e2a71ffb87afc902cc61565bf853573
cites cdi_FETCH-LOGICAL-c4271-e40d5d2e7a5340fc46f0ba2488c0143451e2a71ffb87afc902cc61565bf853573
container_end_page 15946
container_issue 37
container_start_page 15942
container_title Angewandte Chemie International Edition
container_volume 59
creator Young, Katherine G.
Najafi, Behnam
Sant, William M.
Contera, Sonia
Louis, Ard A.
Doye, Jonathan P. K.
Turberfield, Andrew J.
Bath, Jonathan
description DNA self‐assembly allows the construction of nanometre‐scale structures and devices. Structures with thousands of unique components are routinely assembled in good yield. Experimental progress has been rapid, based largely on empirical design rules. Herein, we demonstrate a DNA origami technique designed as a model system with which to explore the mechanism of assembly. The origami fold is controlled through single‐stranded loops embedded in a double‐stranded DNA template and is programmed by a set of double‐stranded linkers that specify pairwise interactions between loop sequences. Assembly is via T‐junctions formed by hybridization of single‐stranded overhangs on the linkers with the loops. The sequence of loops on the template and the set of interaction rules embodied in the linkers can be reconfigured with ease. We show that a set of just two interaction rules can be used to assemble simple T‐junction origami motifs and that assembly can be performed at room temperature. Bringing DNA into the fold: A foldable polymer DNA origami assembled usingT‐junction motifs is presented. It is shown that a set of just two interaction rules can be used to assemble simple T‐junction origami motifs and that assembly can be performed at room temperature.
doi_str_mv 10.1002/anie.202006281
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2412218039</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2412218039</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4271-e40d5d2e7a5340fc46f0ba2488c0143451e2a71ffb87afc902cc61565bf853573</originalsourceid><addsrcrecordid>eNqF0M9KAzEQBvAgCtbq1XPBg152nfzbpMdSqxZKC1LPIZsmJWW7W5Mu0lsfwWf0SUypKHjxNHP4fcPwIXSNIccA5F7X3uYECEBBJD5BHcwJzqgQ9DTtjNJMSI7P0UWMq-SlhKKDbl-saWrnl23QZWV788_9x6qtzdY3de9hOujNgl_qtb9EZ05X0V59zy56fRzNh8_ZZPY0Hg4mmWFE4MwyWPAFsUJzysAZVjgoNWFSGkgvMI4t0QI7V0qhnekDMabAvOClk5xyQbvo7nh3E5q31satWvtobFXp2jZtVIRhQrAE2k_05g9dNW2o03dJMWBMCHlQ-VGZ0MQYrFOb4Nc67BQGdehNHXpTP72lQP8YePeV3f2j1WA6Hv1mvwCAtW9v</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2440447789</pqid></control><display><type>article</type><title>Reconfigurable T‐junction DNA Origami</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Young, Katherine G. ; Najafi, Behnam ; Sant, William M. ; Contera, Sonia ; Louis, Ard A. ; Doye, Jonathan P. K. ; Turberfield, Andrew J. ; Bath, Jonathan</creator><creatorcontrib>Young, Katherine G. ; Najafi, Behnam ; Sant, William M. ; Contera, Sonia ; Louis, Ard A. ; Doye, Jonathan P. K. ; Turberfield, Andrew J. ; Bath, Jonathan</creatorcontrib><description>DNA self‐assembly allows the construction of nanometre‐scale structures and devices. Structures with thousands of unique components are routinely assembled in good yield. Experimental progress has been rapid, based largely on empirical design rules. Herein, we demonstrate a DNA origami technique designed as a model system with which to explore the mechanism of assembly. The origami fold is controlled through single‐stranded loops embedded in a double‐stranded DNA template and is programmed by a set of double‐stranded linkers that specify pairwise interactions between loop sequences. Assembly is via T‐junctions formed by hybridization of single‐stranded overhangs on the linkers with the loops. The sequence of loops on the template and the set of interaction rules embodied in the linkers can be reconfigured with ease. We show that a set of just two interaction rules can be used to assemble simple T‐junction origami motifs and that assembly can be performed at room temperature. Bringing DNA into the fold: A foldable polymer DNA origami assembled usingT‐junction motifs is presented. It is shown that a set of just two interaction rules can be used to assemble simple T‐junction origami motifs and that assembly can be performed at room temperature.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.202006281</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Assembly ; Deoxyribonucleic acid ; DNA ; DNA nanotechnology ; DNA origami ; Hybridization ; Room temperature ; self-assembly ; T-junctions</subject><ispartof>Angewandte Chemie International Edition, 2020-09, Vol.59 (37), p.15942-15946</ispartof><rights>2020 Wiley‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2020 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4271-e40d5d2e7a5340fc46f0ba2488c0143451e2a71ffb87afc902cc61565bf853573</citedby><cites>FETCH-LOGICAL-c4271-e40d5d2e7a5340fc46f0ba2488c0143451e2a71ffb87afc902cc61565bf853573</cites><orcidid>0000-0002-7144-662X ; 0000-0002-2226-9524</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Young, Katherine G.</creatorcontrib><creatorcontrib>Najafi, Behnam</creatorcontrib><creatorcontrib>Sant, William M.</creatorcontrib><creatorcontrib>Contera, Sonia</creatorcontrib><creatorcontrib>Louis, Ard A.</creatorcontrib><creatorcontrib>Doye, Jonathan P. K.</creatorcontrib><creatorcontrib>Turberfield, Andrew J.</creatorcontrib><creatorcontrib>Bath, Jonathan</creatorcontrib><title>Reconfigurable T‐junction DNA Origami</title><title>Angewandte Chemie International Edition</title><description>DNA self‐assembly allows the construction of nanometre‐scale structures and devices. Structures with thousands of unique components are routinely assembled in good yield. Experimental progress has been rapid, based largely on empirical design rules. Herein, we demonstrate a DNA origami technique designed as a model system with which to explore the mechanism of assembly. The origami fold is controlled through single‐stranded loops embedded in a double‐stranded DNA template and is programmed by a set of double‐stranded linkers that specify pairwise interactions between loop sequences. Assembly is via T‐junctions formed by hybridization of single‐stranded overhangs on the linkers with the loops. The sequence of loops on the template and the set of interaction rules embodied in the linkers can be reconfigured with ease. We show that a set of just two interaction rules can be used to assemble simple T‐junction origami motifs and that assembly can be performed at room temperature. Bringing DNA into the fold: A foldable polymer DNA origami assembled usingT‐junction motifs is presented. It is shown that a set of just two interaction rules can be used to assemble simple T‐junction origami motifs and that assembly can be performed at room temperature.</description><subject>Assembly</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA nanotechnology</subject><subject>DNA origami</subject><subject>Hybridization</subject><subject>Room temperature</subject><subject>self-assembly</subject><subject>T-junctions</subject><issn>1433-7851</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqF0M9KAzEQBvAgCtbq1XPBg152nfzbpMdSqxZKC1LPIZsmJWW7W5Mu0lsfwWf0SUypKHjxNHP4fcPwIXSNIccA5F7X3uYECEBBJD5BHcwJzqgQ9DTtjNJMSI7P0UWMq-SlhKKDbl-saWrnl23QZWV788_9x6qtzdY3de9hOujNgl_qtb9EZ05X0V59zy56fRzNh8_ZZPY0Hg4mmWFE4MwyWPAFsUJzysAZVjgoNWFSGkgvMI4t0QI7V0qhnekDMabAvOClk5xyQbvo7nh3E5q31satWvtobFXp2jZtVIRhQrAE2k_05g9dNW2o03dJMWBMCHlQ-VGZ0MQYrFOb4Nc67BQGdehNHXpTP72lQP8YePeV3f2j1WA6Hv1mvwCAtW9v</recordid><startdate>20200907</startdate><enddate>20200907</enddate><creator>Young, Katherine G.</creator><creator>Najafi, Behnam</creator><creator>Sant, William M.</creator><creator>Contera, Sonia</creator><creator>Louis, Ard A.</creator><creator>Doye, Jonathan P. K.</creator><creator>Turberfield, Andrew J.</creator><creator>Bath, Jonathan</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-7144-662X</orcidid><orcidid>https://orcid.org/0000-0002-2226-9524</orcidid></search><sort><creationdate>20200907</creationdate><title>Reconfigurable T‐junction DNA Origami</title><author>Young, Katherine G. ; Najafi, Behnam ; Sant, William M. ; Contera, Sonia ; Louis, Ard A. ; Doye, Jonathan P. K. ; Turberfield, Andrew J. ; Bath, Jonathan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4271-e40d5d2e7a5340fc46f0ba2488c0143451e2a71ffb87afc902cc61565bf853573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Assembly</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA nanotechnology</topic><topic>DNA origami</topic><topic>Hybridization</topic><topic>Room temperature</topic><topic>self-assembly</topic><topic>T-junctions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Young, Katherine G.</creatorcontrib><creatorcontrib>Najafi, Behnam</creatorcontrib><creatorcontrib>Sant, William M.</creatorcontrib><creatorcontrib>Contera, Sonia</creatorcontrib><creatorcontrib>Louis, Ard A.</creatorcontrib><creatorcontrib>Doye, Jonathan P. K.</creatorcontrib><creatorcontrib>Turberfield, Andrew J.</creatorcontrib><creatorcontrib>Bath, Jonathan</creatorcontrib><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Angewandte Chemie International Edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Young, Katherine G.</au><au>Najafi, Behnam</au><au>Sant, William M.</au><au>Contera, Sonia</au><au>Louis, Ard A.</au><au>Doye, Jonathan P. K.</au><au>Turberfield, Andrew J.</au><au>Bath, Jonathan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reconfigurable T‐junction DNA Origami</atitle><jtitle>Angewandte Chemie International Edition</jtitle><date>2020-09-07</date><risdate>2020</risdate><volume>59</volume><issue>37</issue><spage>15942</spage><epage>15946</epage><pages>15942-15946</pages><issn>1433-7851</issn><eissn>1521-3773</eissn><abstract>DNA self‐assembly allows the construction of nanometre‐scale structures and devices. Structures with thousands of unique components are routinely assembled in good yield. Experimental progress has been rapid, based largely on empirical design rules. Herein, we demonstrate a DNA origami technique designed as a model system with which to explore the mechanism of assembly. The origami fold is controlled through single‐stranded loops embedded in a double‐stranded DNA template and is programmed by a set of double‐stranded linkers that specify pairwise interactions between loop sequences. Assembly is via T‐junctions formed by hybridization of single‐stranded overhangs on the linkers with the loops. The sequence of loops on the template and the set of interaction rules embodied in the linkers can be reconfigured with ease. We show that a set of just two interaction rules can be used to assemble simple T‐junction origami motifs and that assembly can be performed at room temperature. Bringing DNA into the fold: A foldable polymer DNA origami assembled usingT‐junction motifs is presented. It is shown that a set of just two interaction rules can be used to assemble simple T‐junction origami motifs and that assembly can be performed at room temperature.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/anie.202006281</doi><tpages>5</tpages><edition>International ed. in English</edition><orcidid>https://orcid.org/0000-0002-7144-662X</orcidid><orcidid>https://orcid.org/0000-0002-2226-9524</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1433-7851
ispartof Angewandte Chemie International Edition, 2020-09, Vol.59 (37), p.15942-15946
issn 1433-7851
1521-3773
language eng
recordid cdi_proquest_miscellaneous_2412218039
source Wiley-Blackwell Read & Publish Collection
subjects Assembly
Deoxyribonucleic acid
DNA
DNA nanotechnology
DNA origami
Hybridization
Room temperature
self-assembly
T-junctions
title Reconfigurable T‐junction DNA Origami
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T21%3A13%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reconfigurable%20T%E2%80%90junction%20DNA%20Origami&rft.jtitle=Angewandte%20Chemie%20International%20Edition&rft.au=Young,%20Katherine%20G.&rft.date=2020-09-07&rft.volume=59&rft.issue=37&rft.spage=15942&rft.epage=15946&rft.pages=15942-15946&rft.issn=1433-7851&rft.eissn=1521-3773&rft_id=info:doi/10.1002/anie.202006281&rft_dat=%3Cproquest_cross%3E2412218039%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4271-e40d5d2e7a5340fc46f0ba2488c0143451e2a71ffb87afc902cc61565bf853573%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2440447789&rft_id=info:pmid/&rfr_iscdi=true