Loading…
Reconfigurable T‐junction DNA Origami
DNA self‐assembly allows the construction of nanometre‐scale structures and devices. Structures with thousands of unique components are routinely assembled in good yield. Experimental progress has been rapid, based largely on empirical design rules. Herein, we demonstrate a DNA origami technique des...
Saved in:
Published in: | Angewandte Chemie International Edition 2020-09, Vol.59 (37), p.15942-15946 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c4271-e40d5d2e7a5340fc46f0ba2488c0143451e2a71ffb87afc902cc61565bf853573 |
---|---|
cites | cdi_FETCH-LOGICAL-c4271-e40d5d2e7a5340fc46f0ba2488c0143451e2a71ffb87afc902cc61565bf853573 |
container_end_page | 15946 |
container_issue | 37 |
container_start_page | 15942 |
container_title | Angewandte Chemie International Edition |
container_volume | 59 |
creator | Young, Katherine G. Najafi, Behnam Sant, William M. Contera, Sonia Louis, Ard A. Doye, Jonathan P. K. Turberfield, Andrew J. Bath, Jonathan |
description | DNA self‐assembly allows the construction of nanometre‐scale structures and devices. Structures with thousands of unique components are routinely assembled in good yield. Experimental progress has been rapid, based largely on empirical design rules. Herein, we demonstrate a DNA origami technique designed as a model system with which to explore the mechanism of assembly. The origami fold is controlled through single‐stranded loops embedded in a double‐stranded DNA template and is programmed by a set of double‐stranded linkers that specify pairwise interactions between loop sequences. Assembly is via T‐junctions formed by hybridization of single‐stranded overhangs on the linkers with the loops. The sequence of loops on the template and the set of interaction rules embodied in the linkers can be reconfigured with ease. We show that a set of just two interaction rules can be used to assemble simple T‐junction origami motifs and that assembly can be performed at room temperature.
Bringing DNA into the fold: A foldable polymer DNA origami assembled usingT‐junction motifs is presented. It is shown that a set of just two interaction rules can be used to assemble simple T‐junction origami motifs and that assembly can be performed at room temperature. |
doi_str_mv | 10.1002/anie.202006281 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2412218039</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2412218039</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4271-e40d5d2e7a5340fc46f0ba2488c0143451e2a71ffb87afc902cc61565bf853573</originalsourceid><addsrcrecordid>eNqF0M9KAzEQBvAgCtbq1XPBg152nfzbpMdSqxZKC1LPIZsmJWW7W5Mu0lsfwWf0SUypKHjxNHP4fcPwIXSNIccA5F7X3uYECEBBJD5BHcwJzqgQ9DTtjNJMSI7P0UWMq-SlhKKDbl-saWrnl23QZWV788_9x6qtzdY3de9hOujNgl_qtb9EZ05X0V59zy56fRzNh8_ZZPY0Hg4mmWFE4MwyWPAFsUJzysAZVjgoNWFSGkgvMI4t0QI7V0qhnekDMabAvOClk5xyQbvo7nh3E5q31satWvtobFXp2jZtVIRhQrAE2k_05g9dNW2o03dJMWBMCHlQ-VGZ0MQYrFOb4Nc67BQGdehNHXpTP72lQP8YePeV3f2j1WA6Hv1mvwCAtW9v</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2440447789</pqid></control><display><type>article</type><title>Reconfigurable T‐junction DNA Origami</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Young, Katherine G. ; Najafi, Behnam ; Sant, William M. ; Contera, Sonia ; Louis, Ard A. ; Doye, Jonathan P. K. ; Turberfield, Andrew J. ; Bath, Jonathan</creator><creatorcontrib>Young, Katherine G. ; Najafi, Behnam ; Sant, William M. ; Contera, Sonia ; Louis, Ard A. ; Doye, Jonathan P. K. ; Turberfield, Andrew J. ; Bath, Jonathan</creatorcontrib><description>DNA self‐assembly allows the construction of nanometre‐scale structures and devices. Structures with thousands of unique components are routinely assembled in good yield. Experimental progress has been rapid, based largely on empirical design rules. Herein, we demonstrate a DNA origami technique designed as a model system with which to explore the mechanism of assembly. The origami fold is controlled through single‐stranded loops embedded in a double‐stranded DNA template and is programmed by a set of double‐stranded linkers that specify pairwise interactions between loop sequences. Assembly is via T‐junctions formed by hybridization of single‐stranded overhangs on the linkers with the loops. The sequence of loops on the template and the set of interaction rules embodied in the linkers can be reconfigured with ease. We show that a set of just two interaction rules can be used to assemble simple T‐junction origami motifs and that assembly can be performed at room temperature.
Bringing DNA into the fold: A foldable polymer DNA origami assembled usingT‐junction motifs is presented. It is shown that a set of just two interaction rules can be used to assemble simple T‐junction origami motifs and that assembly can be performed at room temperature.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.202006281</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Assembly ; Deoxyribonucleic acid ; DNA ; DNA nanotechnology ; DNA origami ; Hybridization ; Room temperature ; self-assembly ; T-junctions</subject><ispartof>Angewandte Chemie International Edition, 2020-09, Vol.59 (37), p.15942-15946</ispartof><rights>2020 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2020 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4271-e40d5d2e7a5340fc46f0ba2488c0143451e2a71ffb87afc902cc61565bf853573</citedby><cites>FETCH-LOGICAL-c4271-e40d5d2e7a5340fc46f0ba2488c0143451e2a71ffb87afc902cc61565bf853573</cites><orcidid>0000-0002-7144-662X ; 0000-0002-2226-9524</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Young, Katherine G.</creatorcontrib><creatorcontrib>Najafi, Behnam</creatorcontrib><creatorcontrib>Sant, William M.</creatorcontrib><creatorcontrib>Contera, Sonia</creatorcontrib><creatorcontrib>Louis, Ard A.</creatorcontrib><creatorcontrib>Doye, Jonathan P. K.</creatorcontrib><creatorcontrib>Turberfield, Andrew J.</creatorcontrib><creatorcontrib>Bath, Jonathan</creatorcontrib><title>Reconfigurable T‐junction DNA Origami</title><title>Angewandte Chemie International Edition</title><description>DNA self‐assembly allows the construction of nanometre‐scale structures and devices. Structures with thousands of unique components are routinely assembled in good yield. Experimental progress has been rapid, based largely on empirical design rules. Herein, we demonstrate a DNA origami technique designed as a model system with which to explore the mechanism of assembly. The origami fold is controlled through single‐stranded loops embedded in a double‐stranded DNA template and is programmed by a set of double‐stranded linkers that specify pairwise interactions between loop sequences. Assembly is via T‐junctions formed by hybridization of single‐stranded overhangs on the linkers with the loops. The sequence of loops on the template and the set of interaction rules embodied in the linkers can be reconfigured with ease. We show that a set of just two interaction rules can be used to assemble simple T‐junction origami motifs and that assembly can be performed at room temperature.
Bringing DNA into the fold: A foldable polymer DNA origami assembled usingT‐junction motifs is presented. It is shown that a set of just two interaction rules can be used to assemble simple T‐junction origami motifs and that assembly can be performed at room temperature.</description><subject>Assembly</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA nanotechnology</subject><subject>DNA origami</subject><subject>Hybridization</subject><subject>Room temperature</subject><subject>self-assembly</subject><subject>T-junctions</subject><issn>1433-7851</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqF0M9KAzEQBvAgCtbq1XPBg152nfzbpMdSqxZKC1LPIZsmJWW7W5Mu0lsfwWf0SUypKHjxNHP4fcPwIXSNIccA5F7X3uYECEBBJD5BHcwJzqgQ9DTtjNJMSI7P0UWMq-SlhKKDbl-saWrnl23QZWV788_9x6qtzdY3de9hOujNgl_qtb9EZ05X0V59zy56fRzNh8_ZZPY0Hg4mmWFE4MwyWPAFsUJzysAZVjgoNWFSGkgvMI4t0QI7V0qhnekDMabAvOClk5xyQbvo7nh3E5q31satWvtobFXp2jZtVIRhQrAE2k_05g9dNW2o03dJMWBMCHlQ-VGZ0MQYrFOb4Nc67BQGdehNHXpTP72lQP8YePeV3f2j1WA6Hv1mvwCAtW9v</recordid><startdate>20200907</startdate><enddate>20200907</enddate><creator>Young, Katherine G.</creator><creator>Najafi, Behnam</creator><creator>Sant, William M.</creator><creator>Contera, Sonia</creator><creator>Louis, Ard A.</creator><creator>Doye, Jonathan P. K.</creator><creator>Turberfield, Andrew J.</creator><creator>Bath, Jonathan</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-7144-662X</orcidid><orcidid>https://orcid.org/0000-0002-2226-9524</orcidid></search><sort><creationdate>20200907</creationdate><title>Reconfigurable T‐junction DNA Origami</title><author>Young, Katherine G. ; Najafi, Behnam ; Sant, William M. ; Contera, Sonia ; Louis, Ard A. ; Doye, Jonathan P. K. ; Turberfield, Andrew J. ; Bath, Jonathan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4271-e40d5d2e7a5340fc46f0ba2488c0143451e2a71ffb87afc902cc61565bf853573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Assembly</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA nanotechnology</topic><topic>DNA origami</topic><topic>Hybridization</topic><topic>Room temperature</topic><topic>self-assembly</topic><topic>T-junctions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Young, Katherine G.</creatorcontrib><creatorcontrib>Najafi, Behnam</creatorcontrib><creatorcontrib>Sant, William M.</creatorcontrib><creatorcontrib>Contera, Sonia</creatorcontrib><creatorcontrib>Louis, Ard A.</creatorcontrib><creatorcontrib>Doye, Jonathan P. K.</creatorcontrib><creatorcontrib>Turberfield, Andrew J.</creatorcontrib><creatorcontrib>Bath, Jonathan</creatorcontrib><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Angewandte Chemie International Edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Young, Katherine G.</au><au>Najafi, Behnam</au><au>Sant, William M.</au><au>Contera, Sonia</au><au>Louis, Ard A.</au><au>Doye, Jonathan P. K.</au><au>Turberfield, Andrew J.</au><au>Bath, Jonathan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reconfigurable T‐junction DNA Origami</atitle><jtitle>Angewandte Chemie International Edition</jtitle><date>2020-09-07</date><risdate>2020</risdate><volume>59</volume><issue>37</issue><spage>15942</spage><epage>15946</epage><pages>15942-15946</pages><issn>1433-7851</issn><eissn>1521-3773</eissn><abstract>DNA self‐assembly allows the construction of nanometre‐scale structures and devices. Structures with thousands of unique components are routinely assembled in good yield. Experimental progress has been rapid, based largely on empirical design rules. Herein, we demonstrate a DNA origami technique designed as a model system with which to explore the mechanism of assembly. The origami fold is controlled through single‐stranded loops embedded in a double‐stranded DNA template and is programmed by a set of double‐stranded linkers that specify pairwise interactions between loop sequences. Assembly is via T‐junctions formed by hybridization of single‐stranded overhangs on the linkers with the loops. The sequence of loops on the template and the set of interaction rules embodied in the linkers can be reconfigured with ease. We show that a set of just two interaction rules can be used to assemble simple T‐junction origami motifs and that assembly can be performed at room temperature.
Bringing DNA into the fold: A foldable polymer DNA origami assembled usingT‐junction motifs is presented. It is shown that a set of just two interaction rules can be used to assemble simple T‐junction origami motifs and that assembly can be performed at room temperature.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/anie.202006281</doi><tpages>5</tpages><edition>International ed. in English</edition><orcidid>https://orcid.org/0000-0002-7144-662X</orcidid><orcidid>https://orcid.org/0000-0002-2226-9524</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1433-7851 |
ispartof | Angewandte Chemie International Edition, 2020-09, Vol.59 (37), p.15942-15946 |
issn | 1433-7851 1521-3773 |
language | eng |
recordid | cdi_proquest_miscellaneous_2412218039 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Assembly Deoxyribonucleic acid DNA DNA nanotechnology DNA origami Hybridization Room temperature self-assembly T-junctions |
title | Reconfigurable T‐junction DNA Origami |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T21%3A13%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reconfigurable%20T%E2%80%90junction%20DNA%20Origami&rft.jtitle=Angewandte%20Chemie%20International%20Edition&rft.au=Young,%20Katherine%20G.&rft.date=2020-09-07&rft.volume=59&rft.issue=37&rft.spage=15942&rft.epage=15946&rft.pages=15942-15946&rft.issn=1433-7851&rft.eissn=1521-3773&rft_id=info:doi/10.1002/anie.202006281&rft_dat=%3Cproquest_cross%3E2412218039%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4271-e40d5d2e7a5340fc46f0ba2488c0143451e2a71ffb87afc902cc61565bf853573%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2440447789&rft_id=info:pmid/&rfr_iscdi=true |