Loading…
Electrostatic Intraperitoneal Aerosol Delivery of Nanoparticles: Proof of Concept and Preclinical Validation
There is an increasing interest in intraperitoneal delivery of chemotherapy as an aerosol in patients with peritoneal metastasis. The currently used technology is hampered by inhomogenous drug delivery throughout the peritoneal cavity because of gravity, drag, and inertial impaction. Addition of an...
Saved in:
Published in: | Advanced healthcare materials 2020-08, Vol.9 (16), p.e2000655-n/a |
---|---|
Main Authors: | , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c4135-ba2fffeabee2303408420fd2ea79b0a0445c14e6b51f10d71bdaa9174ba3d423 |
---|---|
cites | cdi_FETCH-LOGICAL-c4135-ba2fffeabee2303408420fd2ea79b0a0445c14e6b51f10d71bdaa9174ba3d423 |
container_end_page | n/a |
container_issue | 16 |
container_start_page | e2000655 |
container_title | Advanced healthcare materials |
container_volume | 9 |
creator | Van de Sande, Leen Rahimi‐Gorji, Mohammad Giordano, Silvia Davoli, Enrico Matteo, Cristina Detlefsen, Sönke D'Herde, Katharina Braet, Helena Shariati, Molood Remaut, Katrien Xie, Feifan Debbaut, Charlotte Ghorbaniasl, Ghader Cosyns, Sarah Willaert, Wouter Ceelen, Wim |
description | There is an increasing interest in intraperitoneal delivery of chemotherapy as an aerosol in patients with peritoneal metastasis. The currently used technology is hampered by inhomogenous drug delivery throughout the peritoneal cavity because of gravity, drag, and inertial impaction. Addition of an electrical force to aerosol particles, exerted by an electrostatic field, can improve spatial aerosol homogeneity and enhance tissue penetration. A computational fluid dynamics model shows that electrostatic precipitation (EP) results in a significantly improved aerosol distribution. Fluorescent nanoparticles (NPs) remain stable after nebulization in vitro, while EP significantly improves spatial homogeneity of NP distribution. Next, pressurized intraperitoneal chemotherapy with and without EP using NP albumin bound paclitaxel (Nab‐PTX) in a novel rat model is examined. EP does not worsen the effects of CO2 insufflation and intraperitoneal Nab‐PTX on mesothelial structural integrity or the severity of peritoneal inflammation. Importantly, EP significantly enhances tissue penetration of Nab‐PTX in the anatomical regions not facing the nozzle of the nebulizer. Also, the addition of EP leads to more homogenous peritoneal tissue concentrations of Nab‐PTX, in parallel with higher plasma concentrations. In conclusion, EP enhances spatial homogeneity and tissue uptake after intraperitoneal nebulization of anticancer NPs.
In theory, the combination of electrostatic precipitation with pressurized intraperitoneal chemotherapy (PIPAC), termed ePIPAC, can result in better tissue penetration of the aerosol. This theoretical advantage is confirmed in this project using a computational fluid dynamics model, an in vitro box model, and an in vivo rat model. Moreover, the peritoneal integrity is not affected by the applied electrostatic forces. |
doi_str_mv | 10.1002/adhm.202000655 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2414411554</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2414411554</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4135-ba2fffeabee2303408420fd2ea79b0a0445c14e6b51f10d71bdaa9174ba3d423</originalsourceid><addsrcrecordid>eNqFkU1LAzEQhoMoKurVoyx48dI6ySbbrrdSP8Gvg3hdZrOzGEmTNdkq_femVit4EQIJM08ehnkZO-Qw5ADiFJuX2VCAAIBCqQ22K3gpBqJQ5eb6LWGHHcT4Cl8QL8Z8m-3kQslxWYx2mb2wpPvgY4-90dmN6wN2FEzvHaHNJpRa3mbnZM07hUXm2-wene8wJNxSPMseg0_FdKbeaer6DF2TiqStcUYnxzNa0yS7d_tsq0Ub6eD73mNPlxdP0-vB7cPVzXRyO9CS52pQo2jblrAmEjnkEsZSQNsIwlFZA4KUSnNJRa14y6EZ8bpBLPlI1pg3UuR77GSl7YJ_m1Psq5mJmqxFR34eKyG5lJwrJRN6_Ad99fPg0nCJyhWMBYelcLiidNpGDNRWXTAzDIuKQ7VMolomUa2TSB-OvrXzekbNGv_ZewLKFfBhLC3-0VWT8-u7X_knG2GVqg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2435082102</pqid></control><display><type>article</type><title>Electrostatic Intraperitoneal Aerosol Delivery of Nanoparticles: Proof of Concept and Preclinical Validation</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Van de Sande, Leen ; Rahimi‐Gorji, Mohammad ; Giordano, Silvia ; Davoli, Enrico ; Matteo, Cristina ; Detlefsen, Sönke ; D'Herde, Katharina ; Braet, Helena ; Shariati, Molood ; Remaut, Katrien ; Xie, Feifan ; Debbaut, Charlotte ; Ghorbaniasl, Ghader ; Cosyns, Sarah ; Willaert, Wouter ; Ceelen, Wim</creator><creatorcontrib>Van de Sande, Leen ; Rahimi‐Gorji, Mohammad ; Giordano, Silvia ; Davoli, Enrico ; Matteo, Cristina ; Detlefsen, Sönke ; D'Herde, Katharina ; Braet, Helena ; Shariati, Molood ; Remaut, Katrien ; Xie, Feifan ; Debbaut, Charlotte ; Ghorbaniasl, Ghader ; Cosyns, Sarah ; Willaert, Wouter ; Ceelen, Wim</creatorcontrib><description>There is an increasing interest in intraperitoneal delivery of chemotherapy as an aerosol in patients with peritoneal metastasis. The currently used technology is hampered by inhomogenous drug delivery throughout the peritoneal cavity because of gravity, drag, and inertial impaction. Addition of an electrical force to aerosol particles, exerted by an electrostatic field, can improve spatial aerosol homogeneity and enhance tissue penetration. A computational fluid dynamics model shows that electrostatic precipitation (EP) results in a significantly improved aerosol distribution. Fluorescent nanoparticles (NPs) remain stable after nebulization in vitro, while EP significantly improves spatial homogeneity of NP distribution. Next, pressurized intraperitoneal chemotherapy with and without EP using NP albumin bound paclitaxel (Nab‐PTX) in a novel rat model is examined. EP does not worsen the effects of CO2 insufflation and intraperitoneal Nab‐PTX on mesothelial structural integrity or the severity of peritoneal inflammation. Importantly, EP significantly enhances tissue penetration of Nab‐PTX in the anatomical regions not facing the nozzle of the nebulizer. Also, the addition of EP leads to more homogenous peritoneal tissue concentrations of Nab‐PTX, in parallel with higher plasma concentrations. In conclusion, EP enhances spatial homogeneity and tissue uptake after intraperitoneal nebulization of anticancer NPs.
In theory, the combination of electrostatic precipitation with pressurized intraperitoneal chemotherapy (PIPAC), termed ePIPAC, can result in better tissue penetration of the aerosol. This theoretical advantage is confirmed in this project using a computational fluid dynamics model, an in vitro box model, and an in vivo rat model. Moreover, the peritoneal integrity is not affected by the applied electrostatic forces.</description><identifier>ISSN: 2192-2640</identifier><identifier>EISSN: 2192-2659</identifier><identifier>DOI: 10.1002/adhm.202000655</identifier><identifier>PMID: 32548967</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Aerodynamics ; Aerosols ; Albumins ; Animals ; Carbon dioxide ; Chemotherapy ; Computational fluid dynamics ; Computer applications ; Drug delivery ; Drug Delivery Systems ; Electric fields ; electromotive drug administration ; Electrostatic precipitation ; Electrostatic properties ; Fluorescence ; Homogeneity ; Humans ; intraperitoneal drug delivery ; Metastases ; Nanoparticles ; Nozzles ; Paclitaxel ; Penetration ; Peritoneum ; PIPAC ; Rats ; Static Electricity ; Structural integrity</subject><ispartof>Advanced healthcare materials, 2020-08, Vol.9 (16), p.e2000655-n/a</ispartof><rights>2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.</rights><rights>2020 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4135-ba2fffeabee2303408420fd2ea79b0a0445c14e6b51f10d71bdaa9174ba3d423</citedby><cites>FETCH-LOGICAL-c4135-ba2fffeabee2303408420fd2ea79b0a0445c14e6b51f10d71bdaa9174ba3d423</cites><orcidid>0000-0003-0006-8104</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32548967$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Van de Sande, Leen</creatorcontrib><creatorcontrib>Rahimi‐Gorji, Mohammad</creatorcontrib><creatorcontrib>Giordano, Silvia</creatorcontrib><creatorcontrib>Davoli, Enrico</creatorcontrib><creatorcontrib>Matteo, Cristina</creatorcontrib><creatorcontrib>Detlefsen, Sönke</creatorcontrib><creatorcontrib>D'Herde, Katharina</creatorcontrib><creatorcontrib>Braet, Helena</creatorcontrib><creatorcontrib>Shariati, Molood</creatorcontrib><creatorcontrib>Remaut, Katrien</creatorcontrib><creatorcontrib>Xie, Feifan</creatorcontrib><creatorcontrib>Debbaut, Charlotte</creatorcontrib><creatorcontrib>Ghorbaniasl, Ghader</creatorcontrib><creatorcontrib>Cosyns, Sarah</creatorcontrib><creatorcontrib>Willaert, Wouter</creatorcontrib><creatorcontrib>Ceelen, Wim</creatorcontrib><title>Electrostatic Intraperitoneal Aerosol Delivery of Nanoparticles: Proof of Concept and Preclinical Validation</title><title>Advanced healthcare materials</title><addtitle>Adv Healthc Mater</addtitle><description>There is an increasing interest in intraperitoneal delivery of chemotherapy as an aerosol in patients with peritoneal metastasis. The currently used technology is hampered by inhomogenous drug delivery throughout the peritoneal cavity because of gravity, drag, and inertial impaction. Addition of an electrical force to aerosol particles, exerted by an electrostatic field, can improve spatial aerosol homogeneity and enhance tissue penetration. A computational fluid dynamics model shows that electrostatic precipitation (EP) results in a significantly improved aerosol distribution. Fluorescent nanoparticles (NPs) remain stable after nebulization in vitro, while EP significantly improves spatial homogeneity of NP distribution. Next, pressurized intraperitoneal chemotherapy with and without EP using NP albumin bound paclitaxel (Nab‐PTX) in a novel rat model is examined. EP does not worsen the effects of CO2 insufflation and intraperitoneal Nab‐PTX on mesothelial structural integrity or the severity of peritoneal inflammation. Importantly, EP significantly enhances tissue penetration of Nab‐PTX in the anatomical regions not facing the nozzle of the nebulizer. Also, the addition of EP leads to more homogenous peritoneal tissue concentrations of Nab‐PTX, in parallel with higher plasma concentrations. In conclusion, EP enhances spatial homogeneity and tissue uptake after intraperitoneal nebulization of anticancer NPs.
In theory, the combination of electrostatic precipitation with pressurized intraperitoneal chemotherapy (PIPAC), termed ePIPAC, can result in better tissue penetration of the aerosol. This theoretical advantage is confirmed in this project using a computational fluid dynamics model, an in vitro box model, and an in vivo rat model. Moreover, the peritoneal integrity is not affected by the applied electrostatic forces.</description><subject>Aerodynamics</subject><subject>Aerosols</subject><subject>Albumins</subject><subject>Animals</subject><subject>Carbon dioxide</subject><subject>Chemotherapy</subject><subject>Computational fluid dynamics</subject><subject>Computer applications</subject><subject>Drug delivery</subject><subject>Drug Delivery Systems</subject><subject>Electric fields</subject><subject>electromotive drug administration</subject><subject>Electrostatic precipitation</subject><subject>Electrostatic properties</subject><subject>Fluorescence</subject><subject>Homogeneity</subject><subject>Humans</subject><subject>intraperitoneal drug delivery</subject><subject>Metastases</subject><subject>Nanoparticles</subject><subject>Nozzles</subject><subject>Paclitaxel</subject><subject>Penetration</subject><subject>Peritoneum</subject><subject>PIPAC</subject><subject>Rats</subject><subject>Static Electricity</subject><subject>Structural integrity</subject><issn>2192-2640</issn><issn>2192-2659</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkU1LAzEQhoMoKurVoyx48dI6ySbbrrdSP8Gvg3hdZrOzGEmTNdkq_femVit4EQIJM08ehnkZO-Qw5ADiFJuX2VCAAIBCqQ22K3gpBqJQ5eb6LWGHHcT4Cl8QL8Z8m-3kQslxWYx2mb2wpPvgY4-90dmN6wN2FEzvHaHNJpRa3mbnZM07hUXm2-wene8wJNxSPMseg0_FdKbeaer6DF2TiqStcUYnxzNa0yS7d_tsq0Ub6eD73mNPlxdP0-vB7cPVzXRyO9CS52pQo2jblrAmEjnkEsZSQNsIwlFZA4KUSnNJRa14y6EZ8bpBLPlI1pg3UuR77GSl7YJ_m1Psq5mJmqxFR34eKyG5lJwrJRN6_Ad99fPg0nCJyhWMBYelcLiidNpGDNRWXTAzDIuKQ7VMolomUa2TSB-OvrXzekbNGv_ZewLKFfBhLC3-0VWT8-u7X_knG2GVqg</recordid><startdate>20200801</startdate><enddate>20200801</enddate><creator>Van de Sande, Leen</creator><creator>Rahimi‐Gorji, Mohammad</creator><creator>Giordano, Silvia</creator><creator>Davoli, Enrico</creator><creator>Matteo, Cristina</creator><creator>Detlefsen, Sönke</creator><creator>D'Herde, Katharina</creator><creator>Braet, Helena</creator><creator>Shariati, Molood</creator><creator>Remaut, Katrien</creator><creator>Xie, Feifan</creator><creator>Debbaut, Charlotte</creator><creator>Ghorbaniasl, Ghader</creator><creator>Cosyns, Sarah</creator><creator>Willaert, Wouter</creator><creator>Ceelen, Wim</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QP</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T5</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7TO</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0006-8104</orcidid></search><sort><creationdate>20200801</creationdate><title>Electrostatic Intraperitoneal Aerosol Delivery of Nanoparticles: Proof of Concept and Preclinical Validation</title><author>Van de Sande, Leen ; Rahimi‐Gorji, Mohammad ; Giordano, Silvia ; Davoli, Enrico ; Matteo, Cristina ; Detlefsen, Sönke ; D'Herde, Katharina ; Braet, Helena ; Shariati, Molood ; Remaut, Katrien ; Xie, Feifan ; Debbaut, Charlotte ; Ghorbaniasl, Ghader ; Cosyns, Sarah ; Willaert, Wouter ; Ceelen, Wim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4135-ba2fffeabee2303408420fd2ea79b0a0445c14e6b51f10d71bdaa9174ba3d423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aerodynamics</topic><topic>Aerosols</topic><topic>Albumins</topic><topic>Animals</topic><topic>Carbon dioxide</topic><topic>Chemotherapy</topic><topic>Computational fluid dynamics</topic><topic>Computer applications</topic><topic>Drug delivery</topic><topic>Drug Delivery Systems</topic><topic>Electric fields</topic><topic>electromotive drug administration</topic><topic>Electrostatic precipitation</topic><topic>Electrostatic properties</topic><topic>Fluorescence</topic><topic>Homogeneity</topic><topic>Humans</topic><topic>intraperitoneal drug delivery</topic><topic>Metastases</topic><topic>Nanoparticles</topic><topic>Nozzles</topic><topic>Paclitaxel</topic><topic>Penetration</topic><topic>Peritoneum</topic><topic>PIPAC</topic><topic>Rats</topic><topic>Static Electricity</topic><topic>Structural integrity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Van de Sande, Leen</creatorcontrib><creatorcontrib>Rahimi‐Gorji, Mohammad</creatorcontrib><creatorcontrib>Giordano, Silvia</creatorcontrib><creatorcontrib>Davoli, Enrico</creatorcontrib><creatorcontrib>Matteo, Cristina</creatorcontrib><creatorcontrib>Detlefsen, Sönke</creatorcontrib><creatorcontrib>D'Herde, Katharina</creatorcontrib><creatorcontrib>Braet, Helena</creatorcontrib><creatorcontrib>Shariati, Molood</creatorcontrib><creatorcontrib>Remaut, Katrien</creatorcontrib><creatorcontrib>Xie, Feifan</creatorcontrib><creatorcontrib>Debbaut, Charlotte</creatorcontrib><creatorcontrib>Ghorbaniasl, Ghader</creatorcontrib><creatorcontrib>Cosyns, Sarah</creatorcontrib><creatorcontrib>Willaert, Wouter</creatorcontrib><creatorcontrib>Ceelen, Wim</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Immunology Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced healthcare materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Van de Sande, Leen</au><au>Rahimi‐Gorji, Mohammad</au><au>Giordano, Silvia</au><au>Davoli, Enrico</au><au>Matteo, Cristina</au><au>Detlefsen, Sönke</au><au>D'Herde, Katharina</au><au>Braet, Helena</au><au>Shariati, Molood</au><au>Remaut, Katrien</au><au>Xie, Feifan</au><au>Debbaut, Charlotte</au><au>Ghorbaniasl, Ghader</au><au>Cosyns, Sarah</au><au>Willaert, Wouter</au><au>Ceelen, Wim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrostatic Intraperitoneal Aerosol Delivery of Nanoparticles: Proof of Concept and Preclinical Validation</atitle><jtitle>Advanced healthcare materials</jtitle><addtitle>Adv Healthc Mater</addtitle><date>2020-08-01</date><risdate>2020</risdate><volume>9</volume><issue>16</issue><spage>e2000655</spage><epage>n/a</epage><pages>e2000655-n/a</pages><issn>2192-2640</issn><eissn>2192-2659</eissn><abstract>There is an increasing interest in intraperitoneal delivery of chemotherapy as an aerosol in patients with peritoneal metastasis. The currently used technology is hampered by inhomogenous drug delivery throughout the peritoneal cavity because of gravity, drag, and inertial impaction. Addition of an electrical force to aerosol particles, exerted by an electrostatic field, can improve spatial aerosol homogeneity and enhance tissue penetration. A computational fluid dynamics model shows that electrostatic precipitation (EP) results in a significantly improved aerosol distribution. Fluorescent nanoparticles (NPs) remain stable after nebulization in vitro, while EP significantly improves spatial homogeneity of NP distribution. Next, pressurized intraperitoneal chemotherapy with and without EP using NP albumin bound paclitaxel (Nab‐PTX) in a novel rat model is examined. EP does not worsen the effects of CO2 insufflation and intraperitoneal Nab‐PTX on mesothelial structural integrity or the severity of peritoneal inflammation. Importantly, EP significantly enhances tissue penetration of Nab‐PTX in the anatomical regions not facing the nozzle of the nebulizer. Also, the addition of EP leads to more homogenous peritoneal tissue concentrations of Nab‐PTX, in parallel with higher plasma concentrations. In conclusion, EP enhances spatial homogeneity and tissue uptake after intraperitoneal nebulization of anticancer NPs.
In theory, the combination of electrostatic precipitation with pressurized intraperitoneal chemotherapy (PIPAC), termed ePIPAC, can result in better tissue penetration of the aerosol. This theoretical advantage is confirmed in this project using a computational fluid dynamics model, an in vitro box model, and an in vivo rat model. Moreover, the peritoneal integrity is not affected by the applied electrostatic forces.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>32548967</pmid><doi>10.1002/adhm.202000655</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-0006-8104</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2192-2640 |
ispartof | Advanced healthcare materials, 2020-08, Vol.9 (16), p.e2000655-n/a |
issn | 2192-2640 2192-2659 |
language | eng |
recordid | cdi_proquest_miscellaneous_2414411554 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Aerodynamics Aerosols Albumins Animals Carbon dioxide Chemotherapy Computational fluid dynamics Computer applications Drug delivery Drug Delivery Systems Electric fields electromotive drug administration Electrostatic precipitation Electrostatic properties Fluorescence Homogeneity Humans intraperitoneal drug delivery Metastases Nanoparticles Nozzles Paclitaxel Penetration Peritoneum PIPAC Rats Static Electricity Structural integrity |
title | Electrostatic Intraperitoneal Aerosol Delivery of Nanoparticles: Proof of Concept and Preclinical Validation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T22%3A41%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrostatic%20Intraperitoneal%20Aerosol%20Delivery%20of%20Nanoparticles:%20Proof%20of%20Concept%20and%20Preclinical%20Validation&rft.jtitle=Advanced%20healthcare%20materials&rft.au=Van%20de%20Sande,%20Leen&rft.date=2020-08-01&rft.volume=9&rft.issue=16&rft.spage=e2000655&rft.epage=n/a&rft.pages=e2000655-n/a&rft.issn=2192-2640&rft.eissn=2192-2659&rft_id=info:doi/10.1002/adhm.202000655&rft_dat=%3Cproquest_cross%3E2414411554%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4135-ba2fffeabee2303408420fd2ea79b0a0445c14e6b51f10d71bdaa9174ba3d423%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2435082102&rft_id=info:pmid/32548967&rfr_iscdi=true |