Loading…

Electrostatic Intraperitoneal Aerosol Delivery of Nanoparticles: Proof of Concept and Preclinical Validation

There is an increasing interest in intraperitoneal delivery of chemotherapy as an aerosol in patients with peritoneal metastasis. The currently used technology is hampered by inhomogenous drug delivery throughout the peritoneal cavity because of gravity, drag, and inertial impaction. Addition of an...

Full description

Saved in:
Bibliographic Details
Published in:Advanced healthcare materials 2020-08, Vol.9 (16), p.e2000655-n/a
Main Authors: Van de Sande, Leen, Rahimi‐Gorji, Mohammad, Giordano, Silvia, Davoli, Enrico, Matteo, Cristina, Detlefsen, Sönke, D'Herde, Katharina, Braet, Helena, Shariati, Molood, Remaut, Katrien, Xie, Feifan, Debbaut, Charlotte, Ghorbaniasl, Ghader, Cosyns, Sarah, Willaert, Wouter, Ceelen, Wim
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4135-ba2fffeabee2303408420fd2ea79b0a0445c14e6b51f10d71bdaa9174ba3d423
cites cdi_FETCH-LOGICAL-c4135-ba2fffeabee2303408420fd2ea79b0a0445c14e6b51f10d71bdaa9174ba3d423
container_end_page n/a
container_issue 16
container_start_page e2000655
container_title Advanced healthcare materials
container_volume 9
creator Van de Sande, Leen
Rahimi‐Gorji, Mohammad
Giordano, Silvia
Davoli, Enrico
Matteo, Cristina
Detlefsen, Sönke
D'Herde, Katharina
Braet, Helena
Shariati, Molood
Remaut, Katrien
Xie, Feifan
Debbaut, Charlotte
Ghorbaniasl, Ghader
Cosyns, Sarah
Willaert, Wouter
Ceelen, Wim
description There is an increasing interest in intraperitoneal delivery of chemotherapy as an aerosol in patients with peritoneal metastasis. The currently used technology is hampered by inhomogenous drug delivery throughout the peritoneal cavity because of gravity, drag, and inertial impaction. Addition of an electrical force to aerosol particles, exerted by an electrostatic field, can improve spatial aerosol homogeneity and enhance tissue penetration. A computational fluid dynamics model shows that electrostatic precipitation (EP) results in a significantly improved aerosol distribution. Fluorescent nanoparticles (NPs) remain stable after nebulization in vitro, while EP significantly improves spatial homogeneity of NP distribution. Next, pressurized intraperitoneal chemotherapy with and without EP using NP albumin bound paclitaxel (Nab‐PTX) in a novel rat model is examined. EP does not worsen the effects of CO2 insufflation and intraperitoneal Nab‐PTX on mesothelial structural integrity or the severity of peritoneal inflammation. Importantly, EP significantly enhances tissue penetration of Nab‐PTX in the anatomical regions not facing the nozzle of the nebulizer. Also, the addition of EP leads to more homogenous peritoneal tissue concentrations of Nab‐PTX, in parallel with higher plasma concentrations. In conclusion, EP enhances spatial homogeneity and tissue uptake after intraperitoneal nebulization of anticancer NPs. In theory, the combination of electrostatic precipitation with pressurized intraperitoneal chemotherapy (PIPAC), termed ePIPAC, can result in better tissue penetration of the aerosol. This theoretical advantage is confirmed in this project using a computational fluid dynamics model, an in vitro box model, and an in vivo rat model. Moreover, the peritoneal integrity is not affected by the applied electrostatic forces.
doi_str_mv 10.1002/adhm.202000655
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2414411554</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2414411554</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4135-ba2fffeabee2303408420fd2ea79b0a0445c14e6b51f10d71bdaa9174ba3d423</originalsourceid><addsrcrecordid>eNqFkU1LAzEQhoMoKurVoyx48dI6ySbbrrdSP8Gvg3hdZrOzGEmTNdkq_femVit4EQIJM08ehnkZO-Qw5ADiFJuX2VCAAIBCqQ22K3gpBqJQ5eb6LWGHHcT4Cl8QL8Z8m-3kQslxWYx2mb2wpPvgY4-90dmN6wN2FEzvHaHNJpRa3mbnZM07hUXm2-wene8wJNxSPMseg0_FdKbeaer6DF2TiqStcUYnxzNa0yS7d_tsq0Ub6eD73mNPlxdP0-vB7cPVzXRyO9CS52pQo2jblrAmEjnkEsZSQNsIwlFZA4KUSnNJRa14y6EZ8bpBLPlI1pg3UuR77GSl7YJ_m1Psq5mJmqxFR34eKyG5lJwrJRN6_Ad99fPg0nCJyhWMBYelcLiidNpGDNRWXTAzDIuKQ7VMolomUa2TSB-OvrXzekbNGv_ZewLKFfBhLC3-0VWT8-u7X_knG2GVqg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2435082102</pqid></control><display><type>article</type><title>Electrostatic Intraperitoneal Aerosol Delivery of Nanoparticles: Proof of Concept and Preclinical Validation</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Van de Sande, Leen ; Rahimi‐Gorji, Mohammad ; Giordano, Silvia ; Davoli, Enrico ; Matteo, Cristina ; Detlefsen, Sönke ; D'Herde, Katharina ; Braet, Helena ; Shariati, Molood ; Remaut, Katrien ; Xie, Feifan ; Debbaut, Charlotte ; Ghorbaniasl, Ghader ; Cosyns, Sarah ; Willaert, Wouter ; Ceelen, Wim</creator><creatorcontrib>Van de Sande, Leen ; Rahimi‐Gorji, Mohammad ; Giordano, Silvia ; Davoli, Enrico ; Matteo, Cristina ; Detlefsen, Sönke ; D'Herde, Katharina ; Braet, Helena ; Shariati, Molood ; Remaut, Katrien ; Xie, Feifan ; Debbaut, Charlotte ; Ghorbaniasl, Ghader ; Cosyns, Sarah ; Willaert, Wouter ; Ceelen, Wim</creatorcontrib><description>There is an increasing interest in intraperitoneal delivery of chemotherapy as an aerosol in patients with peritoneal metastasis. The currently used technology is hampered by inhomogenous drug delivery throughout the peritoneal cavity because of gravity, drag, and inertial impaction. Addition of an electrical force to aerosol particles, exerted by an electrostatic field, can improve spatial aerosol homogeneity and enhance tissue penetration. A computational fluid dynamics model shows that electrostatic precipitation (EP) results in a significantly improved aerosol distribution. Fluorescent nanoparticles (NPs) remain stable after nebulization in vitro, while EP significantly improves spatial homogeneity of NP distribution. Next, pressurized intraperitoneal chemotherapy with and without EP using NP albumin bound paclitaxel (Nab‐PTX) in a novel rat model is examined. EP does not worsen the effects of CO2 insufflation and intraperitoneal Nab‐PTX on mesothelial structural integrity or the severity of peritoneal inflammation. Importantly, EP significantly enhances tissue penetration of Nab‐PTX in the anatomical regions not facing the nozzle of the nebulizer. Also, the addition of EP leads to more homogenous peritoneal tissue concentrations of Nab‐PTX, in parallel with higher plasma concentrations. In conclusion, EP enhances spatial homogeneity and tissue uptake after intraperitoneal nebulization of anticancer NPs. In theory, the combination of electrostatic precipitation with pressurized intraperitoneal chemotherapy (PIPAC), termed ePIPAC, can result in better tissue penetration of the aerosol. This theoretical advantage is confirmed in this project using a computational fluid dynamics model, an in vitro box model, and an in vivo rat model. Moreover, the peritoneal integrity is not affected by the applied electrostatic forces.</description><identifier>ISSN: 2192-2640</identifier><identifier>EISSN: 2192-2659</identifier><identifier>DOI: 10.1002/adhm.202000655</identifier><identifier>PMID: 32548967</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Aerodynamics ; Aerosols ; Albumins ; Animals ; Carbon dioxide ; Chemotherapy ; Computational fluid dynamics ; Computer applications ; Drug delivery ; Drug Delivery Systems ; Electric fields ; electromotive drug administration ; Electrostatic precipitation ; Electrostatic properties ; Fluorescence ; Homogeneity ; Humans ; intraperitoneal drug delivery ; Metastases ; Nanoparticles ; Nozzles ; Paclitaxel ; Penetration ; Peritoneum ; PIPAC ; Rats ; Static Electricity ; Structural integrity</subject><ispartof>Advanced healthcare materials, 2020-08, Vol.9 (16), p.e2000655-n/a</ispartof><rights>2020 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2020 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><rights>2020 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4135-ba2fffeabee2303408420fd2ea79b0a0445c14e6b51f10d71bdaa9174ba3d423</citedby><cites>FETCH-LOGICAL-c4135-ba2fffeabee2303408420fd2ea79b0a0445c14e6b51f10d71bdaa9174ba3d423</cites><orcidid>0000-0003-0006-8104</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32548967$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Van de Sande, Leen</creatorcontrib><creatorcontrib>Rahimi‐Gorji, Mohammad</creatorcontrib><creatorcontrib>Giordano, Silvia</creatorcontrib><creatorcontrib>Davoli, Enrico</creatorcontrib><creatorcontrib>Matteo, Cristina</creatorcontrib><creatorcontrib>Detlefsen, Sönke</creatorcontrib><creatorcontrib>D'Herde, Katharina</creatorcontrib><creatorcontrib>Braet, Helena</creatorcontrib><creatorcontrib>Shariati, Molood</creatorcontrib><creatorcontrib>Remaut, Katrien</creatorcontrib><creatorcontrib>Xie, Feifan</creatorcontrib><creatorcontrib>Debbaut, Charlotte</creatorcontrib><creatorcontrib>Ghorbaniasl, Ghader</creatorcontrib><creatorcontrib>Cosyns, Sarah</creatorcontrib><creatorcontrib>Willaert, Wouter</creatorcontrib><creatorcontrib>Ceelen, Wim</creatorcontrib><title>Electrostatic Intraperitoneal Aerosol Delivery of Nanoparticles: Proof of Concept and Preclinical Validation</title><title>Advanced healthcare materials</title><addtitle>Adv Healthc Mater</addtitle><description>There is an increasing interest in intraperitoneal delivery of chemotherapy as an aerosol in patients with peritoneal metastasis. The currently used technology is hampered by inhomogenous drug delivery throughout the peritoneal cavity because of gravity, drag, and inertial impaction. Addition of an electrical force to aerosol particles, exerted by an electrostatic field, can improve spatial aerosol homogeneity and enhance tissue penetration. A computational fluid dynamics model shows that electrostatic precipitation (EP) results in a significantly improved aerosol distribution. Fluorescent nanoparticles (NPs) remain stable after nebulization in vitro, while EP significantly improves spatial homogeneity of NP distribution. Next, pressurized intraperitoneal chemotherapy with and without EP using NP albumin bound paclitaxel (Nab‐PTX) in a novel rat model is examined. EP does not worsen the effects of CO2 insufflation and intraperitoneal Nab‐PTX on mesothelial structural integrity or the severity of peritoneal inflammation. Importantly, EP significantly enhances tissue penetration of Nab‐PTX in the anatomical regions not facing the nozzle of the nebulizer. Also, the addition of EP leads to more homogenous peritoneal tissue concentrations of Nab‐PTX, in parallel with higher plasma concentrations. In conclusion, EP enhances spatial homogeneity and tissue uptake after intraperitoneal nebulization of anticancer NPs. In theory, the combination of electrostatic precipitation with pressurized intraperitoneal chemotherapy (PIPAC), termed ePIPAC, can result in better tissue penetration of the aerosol. This theoretical advantage is confirmed in this project using a computational fluid dynamics model, an in vitro box model, and an in vivo rat model. Moreover, the peritoneal integrity is not affected by the applied electrostatic forces.</description><subject>Aerodynamics</subject><subject>Aerosols</subject><subject>Albumins</subject><subject>Animals</subject><subject>Carbon dioxide</subject><subject>Chemotherapy</subject><subject>Computational fluid dynamics</subject><subject>Computer applications</subject><subject>Drug delivery</subject><subject>Drug Delivery Systems</subject><subject>Electric fields</subject><subject>electromotive drug administration</subject><subject>Electrostatic precipitation</subject><subject>Electrostatic properties</subject><subject>Fluorescence</subject><subject>Homogeneity</subject><subject>Humans</subject><subject>intraperitoneal drug delivery</subject><subject>Metastases</subject><subject>Nanoparticles</subject><subject>Nozzles</subject><subject>Paclitaxel</subject><subject>Penetration</subject><subject>Peritoneum</subject><subject>PIPAC</subject><subject>Rats</subject><subject>Static Electricity</subject><subject>Structural integrity</subject><issn>2192-2640</issn><issn>2192-2659</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkU1LAzEQhoMoKurVoyx48dI6ySbbrrdSP8Gvg3hdZrOzGEmTNdkq_femVit4EQIJM08ehnkZO-Qw5ADiFJuX2VCAAIBCqQ22K3gpBqJQ5eb6LWGHHcT4Cl8QL8Z8m-3kQslxWYx2mb2wpPvgY4-90dmN6wN2FEzvHaHNJpRa3mbnZM07hUXm2-wene8wJNxSPMseg0_FdKbeaer6DF2TiqStcUYnxzNa0yS7d_tsq0Ub6eD73mNPlxdP0-vB7cPVzXRyO9CS52pQo2jblrAmEjnkEsZSQNsIwlFZA4KUSnNJRa14y6EZ8bpBLPlI1pg3UuR77GSl7YJ_m1Psq5mJmqxFR34eKyG5lJwrJRN6_Ad99fPg0nCJyhWMBYelcLiidNpGDNRWXTAzDIuKQ7VMolomUa2TSB-OvrXzekbNGv_ZewLKFfBhLC3-0VWT8-u7X_knG2GVqg</recordid><startdate>20200801</startdate><enddate>20200801</enddate><creator>Van de Sande, Leen</creator><creator>Rahimi‐Gorji, Mohammad</creator><creator>Giordano, Silvia</creator><creator>Davoli, Enrico</creator><creator>Matteo, Cristina</creator><creator>Detlefsen, Sönke</creator><creator>D'Herde, Katharina</creator><creator>Braet, Helena</creator><creator>Shariati, Molood</creator><creator>Remaut, Katrien</creator><creator>Xie, Feifan</creator><creator>Debbaut, Charlotte</creator><creator>Ghorbaniasl, Ghader</creator><creator>Cosyns, Sarah</creator><creator>Willaert, Wouter</creator><creator>Ceelen, Wim</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QP</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T5</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7TO</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0006-8104</orcidid></search><sort><creationdate>20200801</creationdate><title>Electrostatic Intraperitoneal Aerosol Delivery of Nanoparticles: Proof of Concept and Preclinical Validation</title><author>Van de Sande, Leen ; Rahimi‐Gorji, Mohammad ; Giordano, Silvia ; Davoli, Enrico ; Matteo, Cristina ; Detlefsen, Sönke ; D'Herde, Katharina ; Braet, Helena ; Shariati, Molood ; Remaut, Katrien ; Xie, Feifan ; Debbaut, Charlotte ; Ghorbaniasl, Ghader ; Cosyns, Sarah ; Willaert, Wouter ; Ceelen, Wim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4135-ba2fffeabee2303408420fd2ea79b0a0445c14e6b51f10d71bdaa9174ba3d423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aerodynamics</topic><topic>Aerosols</topic><topic>Albumins</topic><topic>Animals</topic><topic>Carbon dioxide</topic><topic>Chemotherapy</topic><topic>Computational fluid dynamics</topic><topic>Computer applications</topic><topic>Drug delivery</topic><topic>Drug Delivery Systems</topic><topic>Electric fields</topic><topic>electromotive drug administration</topic><topic>Electrostatic precipitation</topic><topic>Electrostatic properties</topic><topic>Fluorescence</topic><topic>Homogeneity</topic><topic>Humans</topic><topic>intraperitoneal drug delivery</topic><topic>Metastases</topic><topic>Nanoparticles</topic><topic>Nozzles</topic><topic>Paclitaxel</topic><topic>Penetration</topic><topic>Peritoneum</topic><topic>PIPAC</topic><topic>Rats</topic><topic>Static Electricity</topic><topic>Structural integrity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Van de Sande, Leen</creatorcontrib><creatorcontrib>Rahimi‐Gorji, Mohammad</creatorcontrib><creatorcontrib>Giordano, Silvia</creatorcontrib><creatorcontrib>Davoli, Enrico</creatorcontrib><creatorcontrib>Matteo, Cristina</creatorcontrib><creatorcontrib>Detlefsen, Sönke</creatorcontrib><creatorcontrib>D'Herde, Katharina</creatorcontrib><creatorcontrib>Braet, Helena</creatorcontrib><creatorcontrib>Shariati, Molood</creatorcontrib><creatorcontrib>Remaut, Katrien</creatorcontrib><creatorcontrib>Xie, Feifan</creatorcontrib><creatorcontrib>Debbaut, Charlotte</creatorcontrib><creatorcontrib>Ghorbaniasl, Ghader</creatorcontrib><creatorcontrib>Cosyns, Sarah</creatorcontrib><creatorcontrib>Willaert, Wouter</creatorcontrib><creatorcontrib>Ceelen, Wim</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Immunology Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced healthcare materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Van de Sande, Leen</au><au>Rahimi‐Gorji, Mohammad</au><au>Giordano, Silvia</au><au>Davoli, Enrico</au><au>Matteo, Cristina</au><au>Detlefsen, Sönke</au><au>D'Herde, Katharina</au><au>Braet, Helena</au><au>Shariati, Molood</au><au>Remaut, Katrien</au><au>Xie, Feifan</au><au>Debbaut, Charlotte</au><au>Ghorbaniasl, Ghader</au><au>Cosyns, Sarah</au><au>Willaert, Wouter</au><au>Ceelen, Wim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrostatic Intraperitoneal Aerosol Delivery of Nanoparticles: Proof of Concept and Preclinical Validation</atitle><jtitle>Advanced healthcare materials</jtitle><addtitle>Adv Healthc Mater</addtitle><date>2020-08-01</date><risdate>2020</risdate><volume>9</volume><issue>16</issue><spage>e2000655</spage><epage>n/a</epage><pages>e2000655-n/a</pages><issn>2192-2640</issn><eissn>2192-2659</eissn><abstract>There is an increasing interest in intraperitoneal delivery of chemotherapy as an aerosol in patients with peritoneal metastasis. The currently used technology is hampered by inhomogenous drug delivery throughout the peritoneal cavity because of gravity, drag, and inertial impaction. Addition of an electrical force to aerosol particles, exerted by an electrostatic field, can improve spatial aerosol homogeneity and enhance tissue penetration. A computational fluid dynamics model shows that electrostatic precipitation (EP) results in a significantly improved aerosol distribution. Fluorescent nanoparticles (NPs) remain stable after nebulization in vitro, while EP significantly improves spatial homogeneity of NP distribution. Next, pressurized intraperitoneal chemotherapy with and without EP using NP albumin bound paclitaxel (Nab‐PTX) in a novel rat model is examined. EP does not worsen the effects of CO2 insufflation and intraperitoneal Nab‐PTX on mesothelial structural integrity or the severity of peritoneal inflammation. Importantly, EP significantly enhances tissue penetration of Nab‐PTX in the anatomical regions not facing the nozzle of the nebulizer. Also, the addition of EP leads to more homogenous peritoneal tissue concentrations of Nab‐PTX, in parallel with higher plasma concentrations. In conclusion, EP enhances spatial homogeneity and tissue uptake after intraperitoneal nebulization of anticancer NPs. In theory, the combination of electrostatic precipitation with pressurized intraperitoneal chemotherapy (PIPAC), termed ePIPAC, can result in better tissue penetration of the aerosol. This theoretical advantage is confirmed in this project using a computational fluid dynamics model, an in vitro box model, and an in vivo rat model. Moreover, the peritoneal integrity is not affected by the applied electrostatic forces.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>32548967</pmid><doi>10.1002/adhm.202000655</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-0006-8104</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2192-2640
ispartof Advanced healthcare materials, 2020-08, Vol.9 (16), p.e2000655-n/a
issn 2192-2640
2192-2659
language eng
recordid cdi_proquest_miscellaneous_2414411554
source Wiley-Blackwell Read & Publish Collection
subjects Aerodynamics
Aerosols
Albumins
Animals
Carbon dioxide
Chemotherapy
Computational fluid dynamics
Computer applications
Drug delivery
Drug Delivery Systems
Electric fields
electromotive drug administration
Electrostatic precipitation
Electrostatic properties
Fluorescence
Homogeneity
Humans
intraperitoneal drug delivery
Metastases
Nanoparticles
Nozzles
Paclitaxel
Penetration
Peritoneum
PIPAC
Rats
Static Electricity
Structural integrity
title Electrostatic Intraperitoneal Aerosol Delivery of Nanoparticles: Proof of Concept and Preclinical Validation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T22%3A41%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrostatic%20Intraperitoneal%20Aerosol%20Delivery%20of%20Nanoparticles:%20Proof%20of%20Concept%20and%20Preclinical%20Validation&rft.jtitle=Advanced%20healthcare%20materials&rft.au=Van%20de%20Sande,%20Leen&rft.date=2020-08-01&rft.volume=9&rft.issue=16&rft.spage=e2000655&rft.epage=n/a&rft.pages=e2000655-n/a&rft.issn=2192-2640&rft.eissn=2192-2659&rft_id=info:doi/10.1002/adhm.202000655&rft_dat=%3Cproquest_cross%3E2414411554%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4135-ba2fffeabee2303408420fd2ea79b0a0445c14e6b51f10d71bdaa9174ba3d423%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2435082102&rft_id=info:pmid/32548967&rfr_iscdi=true