Loading…

Dynamic growth models for Caragana korshinskii shrub biomass in China

The Caragana korshinskii shrub is a widely distributed plant found in arid regions and plays an important role in ecological environment protection. Accurate estimations of shrub biomass are particularly important for natural resource management decision making. 114 individual C. korshinskii shrubs...

Full description

Saved in:
Bibliographic Details
Published in:Journal of environmental management 2020-09, Vol.269, p.110675-110675, Article 110675
Main Authors: Xu, Hao, Wang, Zhanjun, Li, Ying, He, Jianlong, Wu, Xudong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The Caragana korshinskii shrub is a widely distributed plant found in arid regions and plays an important role in ecological environment protection. Accurate estimations of shrub biomass are particularly important for natural resource management decision making. 114 individual C. korshinskii shrubs from three regions were collected in northwest China in this study. With regions as fixed (dummy variables) and random effects, the nonlinear least square (NLS) regression approach, nonlinear fixed effects (NLFE) approach and nonlinear mixed effects (NLME) approach were developed to predict dynamic growth of total, aboveground, stem, foliage, and root biomass values of C. korshinskii shrub based on logistic function. Results revealed that both NLFE and NLME models performed better than NLS, which indicated that regions were important factors influenced shrub biomass dynamic growth. Additionally, NLME models had a smaller Bayesian information criterion (BIC) than NLFE models. For NLME models, the random effects of regions mainly influenced the growth rate and asymptotic value of the dynamic growth curve, and there was no significant influence on the values associated with the curve shape. Moreover, the modified NLME models with heteroscedasticity exhibited extremely significant differences (p 
ISSN:0301-4797
1095-8630
DOI:10.1016/j.jenvman.2020.110675