Loading…

Abundance and removal characteristics of microplastics at a wastewater treatment plant in Zhengzhou

The widespread use of synthetic polymers has made microplastic (MP) a new type of contaminant that has attracted worldwide attention. Studies have shown that wastewater treatment plants (WWTPs) are an important source of MP collection in the natural environment. This study investigated the removal e...

Full description

Saved in:
Bibliographic Details
Published in:Environmental science and pollution research international 2020-10, Vol.27 (29), p.36295-36305
Main Authors: Ren, PengJu, Dou, Ming, Wang, Cai, Li, GuiQiu, Jia, Ruipeng
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The widespread use of synthetic polymers has made microplastic (MP) a new type of contaminant that has attracted worldwide attention. Studies have shown that wastewater treatment plants (WWTPs) are an important source of MP collection in the natural environment. This study investigated the removal efficiency and migration characteristics of MPs by sampling the sewage from each treatment section of a WWTP in Zhengzhou, China. The results showed that the abundance of MPs in the influent water and primary, secondary, and tertiary treatment discharges was 16.0, 10.3, 4.5, and 2.9 MP/L, respectively, and the total removal rate of MPs from the influent to the final effluent reached 81.9%. The MPs in the WWTP were mainly small-sized (0.08–0.55 mm), followed by medium-sized (0.55–1.7 mm). Fibers were the dominant MP shape in both the water and sediment samples. Black (36%) and red (23%) were the dominant MP colors. Six different polymer types of MPs were detected, which were mainly polypropylene followed by polyethylene. In general, for the MPs in the WWTP, the removal rate of fragments can reach 97.08%, which is better than that of fibers (70.50%); the removal rate of small-sized can reach 95.86%, which is better than that of medium-sized (83.53%) and large-sized (70.00%). In this study, primary treatment has better effects in eliminating fragments and large-sized MPs; secondary treatment has better effects in eliminating fibers and small-sized MPs. Although WWTPs have a very good removal effect on MPs, 870 million MP/d are still discharged into nearby rivers from WWTPs with a treatment scale of 300,000 m 3 /day. Graphical Abstract
ISSN:0944-1344
1614-7499
DOI:10.1007/s11356-020-09611-5