Loading…

The role of molecular mechanism of Ten-Eleven Translocation2 (TET2) family proteins in pathogenesis of cardiovascular diseases (CVDs)

Cardiovascular disease (CVD) is one of the most common diseases worldwide. The underlying pathogenesis of the disease has not yet been determined, but many factors have been identified. Tet methylcytosine dioxygenase 2 (TET2) is one of the epigenetic factors involved in regulating many genes. Theref...

Full description

Saved in:
Bibliographic Details
Published in:Molecular biology reports 2020-07, Vol.47 (7), p.5503-5509
Main Authors: Zadeh, Fatemeh Javaherforoosh, Akbari, Tooba, zayeri, Zeynab Deris, Samimi, Azin, Davari, Nader, Rezaeeyan, Hadi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Cardiovascular disease (CVD) is one of the most common diseases worldwide. The underlying pathogenesis of the disease has not yet been determined, but many factors have been identified. Tet methylcytosine dioxygenase 2 (TET2) is one of the epigenetic factors involved in regulating many genes. Therefore, based on the studies shown, this factor plays an important role in preventing the occurrence of CVD. TET2 has been shown to increase angiogenesis by expressing Robo4. It also increases the activity of Matrix metalloproteinases (MMPs) and stimulates the secretion of Vascular endothelial growth factor angiogenesis. On the other hand, it has been shown that TET2 regulates the expression of several genes and the development of the heart during the embryonic period due to its oxygenating role. TET2 has been shown to regulates the expression of the genes such as Ying Yang1 (YY1), Sox9b, Inhbaa and many other genes that ultimately lead to the differentiation of cardiomyocytes. On the other hand, it has been shown that some Long non coding RNA and MicroRNAs reduce TET2 expression and CVD. Finally, it is concluded that inducing TET2 expression can be a good therapeutic strategy to prevent or improve CVD.
ISSN:0301-4851
1573-4978
DOI:10.1007/s11033-020-05602-4