Loading…

The effect of different ultraviolet-C light doses on microbial reduction and the components of camel milk

As a result of increasing interest in non-thermal technologies as a possible alternative or complementary to milk pasteurization processing, the objectives of this study were to determine the effects of different ultraviolet-C light doses on the viability of Escherichia coli O157:H7 and Salmonella e...

Full description

Saved in:
Bibliographic Details
Published in:Food science and technology international 2021-03, Vol.27 (2), p.99-111
Main Authors: Dhahir, Namariq, Feugang, Jean, Witrick, Katherine, Park, Seongbin, White, Shecoya, AbuGhazaleh, Amer
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:As a result of increasing interest in non-thermal technologies as a possible alternative or complementary to milk pasteurization processing, the objectives of this study were to determine the effects of different ultraviolet-C light doses on the viability of Escherichia coli O157:H7 and Salmonella enterica serovar Typhimurium and chemical changes to camel milk components. Pasteurized and inoculated camel milk samples were ultraviolet-C treated in a continuous flow system. The viability of E. coli O157:H7 and S. Typhimurium was evaluated with both in vivo imaging system and traditional plate count agar method. Samples subjected to the 4.15, 8.30, and 12.45 mJ/cm2 of ultraviolet-C treatment resulted in 1.9, 3.3, and 3.9-log reductions in E. coli O157:H7 and 0.9, 3, and 3.9-log reductions in S. Typhimurium, respectively. The measurement of secondary lipid peroxidation products (or ThioBarbituric Acid Reactive Substance values) showed no significant (P > 0.05) differences between the raw and ultraviolet-C treated milk samples. Additionally, no changes (P > 0.05) in the protein profiles of αs1-casein, α-lactalbumin, and lactoferrin were observed between both samples. Compared to the untreated raw milk, c9t11 conjugated linoleic acid decreased (P 
ISSN:1082-0132
1532-1738
DOI:10.1177/1082013220935230