Loading…
Resting‐state connectivity and network parameter analysis in alcohol‐dependent males. A simultaneous EEG‐MEG study
There is supporting evidence of alcohol negative effects on the brain: neuroimaging and psychophysiological studies finding anatomical and functional connectivity (FC) changes associated with the dependence process. Thus, the aim of this work was to evaluate brain FC and network characteristics of a...
Saved in:
Published in: | Journal of neuroscience research 2020-10, Vol.98 (10), p.1857-1876 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3303-ae396df775eaec5aca5a96cdb806d6f921c5752d9e2009bbb2fd08bf510ba9aa3 |
---|---|
cites | cdi_FETCH-LOGICAL-c3303-ae396df775eaec5aca5a96cdb806d6f921c5752d9e2009bbb2fd08bf510ba9aa3 |
container_end_page | 1876 |
container_issue | 10 |
container_start_page | 1857 |
container_title | Journal of neuroscience research |
container_volume | 98 |
creator | Sion, Ana Bruña Fernández, Ricardo Martínez Maldonado, Andrés Domínguez Centeno, Isabel Torrado‐Carvajal, Angel Rubio, Gabriel Pereda, Ernesto Jurado‐Barba, Rosa |
description | There is supporting evidence of alcohol negative effects on the brain: neuroimaging and psychophysiological studies finding anatomical and functional connectivity (FC) changes associated with the dependence process. Thus, the aim of this work was to evaluate brain FC and network characteristics of alcohol‐dependent individuals in resting state. For this study, we included males diagnosed with alcohol dependence (N = 25) and a group of healthy individuals (N = 23). Simultaneous EEG‐MEG (electroencephalographic and magnetoencephalographic) activity was recorded in 5 min of eyes‐closed resting state. EEG‐MEG activity was preprocessed and FC was computed through the leakage‐corrected version of phase locking value (ciPLV). Additionally, local (degree, efficiency, clustering) and global (efficiency, characteristic path length) network parameters were computed. Connectivity analysis showed an increase in phase‐lagged synchronization, mainly between frontal and frontotemporal regions, in high beta band, and a decrease in interhemispheric gamma, for alcohol‐dependent individuals. Network analysis revealed intergroup differences at the local level for high beta, indicating higher degree, clustering, and efficiency, mostly at frontal nodes, together with a decrease in these measures at more posterior sites for patients’ group. The hyper‐synchronization in beta, next to the hypo‐synchronization in gamma, could indicate an alteration in communication between hemispheres, but also a possible functional compensation mechanism in neural circuits. This could be also supported by network characteristic data, where local alterations in communication are observed.
Alcohol‐dependent individuals present a differential pattern of resting‐state EEG‐MEG connectivity, as well as local communication alterations in brain network. Results point toward difficulties in information flow efficiency and cost, and a possible compensatory effort. |
doi_str_mv | 10.1002/jnr.24673 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2418130368</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2418130368</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3303-ae396df775eaec5aca5a96cdb806d6f921c5752d9e2009bbb2fd08bf510ba9aa3</originalsourceid><addsrcrecordid>eNp10ctu1DAUBmALUYmhZcEbWGIDi0x9yXVZVcO0VS9SBevoxD4BD44z2A5tdn2EPiNPUpewqtSVJes7x_71E_KRszVnTBzvnF-LvKzkG7LirKmyvMirt2TFZMmynHHxjrwPYccYa5pCrsj9LYZo3I-_D48hQkSqRudQRfPHxJmC09RhvBv9L7oHDwNG9OkW7BxMoMZRsGr8Odo0rnGPTqOLdACLYU1PaDDDZCM4HKdAN5ttUlebLQ1x0vMROejBBvzw_zwk379uvp2eZZc32_PTk8tMSclkBiibUvdVVSCgKkBBAU2pdFezUpd9I7gqqkLoBkWK1HWd6DWru77grIMGQB6Sz8vevR9_TylsO5ig0NrlW63Iec3TS2Wd6KcXdDdOPoV9VrlgsqpFmdSXRSk_huCxb_feDODnlrP2uYM2ddD-6yDZ48XeGYvz67C9uL5dJp4AQV-Ncw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2442037826</pqid></control><display><type>article</type><title>Resting‐state connectivity and network parameter analysis in alcohol‐dependent males. A simultaneous EEG‐MEG study</title><source>Wiley</source><creator>Sion, Ana ; Bruña Fernández, Ricardo ; Martínez Maldonado, Andrés ; Domínguez Centeno, Isabel ; Torrado‐Carvajal, Angel ; Rubio, Gabriel ; Pereda, Ernesto ; Jurado‐Barba, Rosa</creator><creatorcontrib>Sion, Ana ; Bruña Fernández, Ricardo ; Martínez Maldonado, Andrés ; Domínguez Centeno, Isabel ; Torrado‐Carvajal, Angel ; Rubio, Gabriel ; Pereda, Ernesto ; Jurado‐Barba, Rosa</creatorcontrib><description>There is supporting evidence of alcohol negative effects on the brain: neuroimaging and psychophysiological studies finding anatomical and functional connectivity (FC) changes associated with the dependence process. Thus, the aim of this work was to evaluate brain FC and network characteristics of alcohol‐dependent individuals in resting state. For this study, we included males diagnosed with alcohol dependence (N = 25) and a group of healthy individuals (N = 23). Simultaneous EEG‐MEG (electroencephalographic and magnetoencephalographic) activity was recorded in 5 min of eyes‐closed resting state. EEG‐MEG activity was preprocessed and FC was computed through the leakage‐corrected version of phase locking value (ciPLV). Additionally, local (degree, efficiency, clustering) and global (efficiency, characteristic path length) network parameters were computed. Connectivity analysis showed an increase in phase‐lagged synchronization, mainly between frontal and frontotemporal regions, in high beta band, and a decrease in interhemispheric gamma, for alcohol‐dependent individuals. Network analysis revealed intergroup differences at the local level for high beta, indicating higher degree, clustering, and efficiency, mostly at frontal nodes, together with a decrease in these measures at more posterior sites for patients’ group. The hyper‐synchronization in beta, next to the hypo‐synchronization in gamma, could indicate an alteration in communication between hemispheres, but also a possible functional compensation mechanism in neural circuits. This could be also supported by network characteristic data, where local alterations in communication are observed.
Alcohol‐dependent individuals present a differential pattern of resting‐state EEG‐MEG connectivity, as well as local communication alterations in brain network. Results point toward difficulties in information flow efficiency and cost, and a possible compensatory effort.</description><identifier>ISSN: 0360-4012</identifier><identifier>EISSN: 1097-4547</identifier><identifier>DOI: 10.1002/jnr.24673</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Alcohol ; alcohol dependence ; Alcohols ; Brain ; Cerebral hemispheres ; Clustering ; Computation ; Connectivity analysis ; Dependence ; Drug dependence ; EEG ; Efficiency ; Electroencephalography ; Frequency dependence ; functional connectivity ; Hemispheres ; Locking ; Magnetoencephalography ; Males ; Medical imaging ; MEG ; Network analysis ; network parameters ; Neural networks ; Neuroimaging ; Parameters ; phase‐lag synchronization ; Synchronism ; Synchronization</subject><ispartof>Journal of neuroscience research, 2020-10, Vol.98 (10), p.1857-1876</ispartof><rights>2020 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3303-ae396df775eaec5aca5a96cdb806d6f921c5752d9e2009bbb2fd08bf510ba9aa3</citedby><cites>FETCH-LOGICAL-c3303-ae396df775eaec5aca5a96cdb806d6f921c5752d9e2009bbb2fd08bf510ba9aa3</cites><orcidid>0000-0002-1117-8387 ; 0000-0003-1007-900X ; 0000-0002-1031-5124 ; 0000-0002-1171-1508 ; 0000-0001-5965-164X ; 0000-0002-1540-2809 ; 0000-0003-1944-1212 ; 0000-0001-9597-0170</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Sion, Ana</creatorcontrib><creatorcontrib>Bruña Fernández, Ricardo</creatorcontrib><creatorcontrib>Martínez Maldonado, Andrés</creatorcontrib><creatorcontrib>Domínguez Centeno, Isabel</creatorcontrib><creatorcontrib>Torrado‐Carvajal, Angel</creatorcontrib><creatorcontrib>Rubio, Gabriel</creatorcontrib><creatorcontrib>Pereda, Ernesto</creatorcontrib><creatorcontrib>Jurado‐Barba, Rosa</creatorcontrib><title>Resting‐state connectivity and network parameter analysis in alcohol‐dependent males. A simultaneous EEG‐MEG study</title><title>Journal of neuroscience research</title><description>There is supporting evidence of alcohol negative effects on the brain: neuroimaging and psychophysiological studies finding anatomical and functional connectivity (FC) changes associated with the dependence process. Thus, the aim of this work was to evaluate brain FC and network characteristics of alcohol‐dependent individuals in resting state. For this study, we included males diagnosed with alcohol dependence (N = 25) and a group of healthy individuals (N = 23). Simultaneous EEG‐MEG (electroencephalographic and magnetoencephalographic) activity was recorded in 5 min of eyes‐closed resting state. EEG‐MEG activity was preprocessed and FC was computed through the leakage‐corrected version of phase locking value (ciPLV). Additionally, local (degree, efficiency, clustering) and global (efficiency, characteristic path length) network parameters were computed. Connectivity analysis showed an increase in phase‐lagged synchronization, mainly between frontal and frontotemporal regions, in high beta band, and a decrease in interhemispheric gamma, for alcohol‐dependent individuals. Network analysis revealed intergroup differences at the local level for high beta, indicating higher degree, clustering, and efficiency, mostly at frontal nodes, together with a decrease in these measures at more posterior sites for patients’ group. The hyper‐synchronization in beta, next to the hypo‐synchronization in gamma, could indicate an alteration in communication between hemispheres, but also a possible functional compensation mechanism in neural circuits. This could be also supported by network characteristic data, where local alterations in communication are observed.
Alcohol‐dependent individuals present a differential pattern of resting‐state EEG‐MEG connectivity, as well as local communication alterations in brain network. Results point toward difficulties in information flow efficiency and cost, and a possible compensatory effort.</description><subject>Alcohol</subject><subject>alcohol dependence</subject><subject>Alcohols</subject><subject>Brain</subject><subject>Cerebral hemispheres</subject><subject>Clustering</subject><subject>Computation</subject><subject>Connectivity analysis</subject><subject>Dependence</subject><subject>Drug dependence</subject><subject>EEG</subject><subject>Efficiency</subject><subject>Electroencephalography</subject><subject>Frequency dependence</subject><subject>functional connectivity</subject><subject>Hemispheres</subject><subject>Locking</subject><subject>Magnetoencephalography</subject><subject>Males</subject><subject>Medical imaging</subject><subject>MEG</subject><subject>Network analysis</subject><subject>network parameters</subject><subject>Neural networks</subject><subject>Neuroimaging</subject><subject>Parameters</subject><subject>phase‐lag synchronization</subject><subject>Synchronism</subject><subject>Synchronization</subject><issn>0360-4012</issn><issn>1097-4547</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp10ctu1DAUBmALUYmhZcEbWGIDi0x9yXVZVcO0VS9SBevoxD4BD44z2A5tdn2EPiNPUpewqtSVJes7x_71E_KRszVnTBzvnF-LvKzkG7LirKmyvMirt2TFZMmynHHxjrwPYccYa5pCrsj9LYZo3I-_D48hQkSqRudQRfPHxJmC09RhvBv9L7oHDwNG9OkW7BxMoMZRsGr8Odo0rnGPTqOLdACLYU1PaDDDZCM4HKdAN5ttUlebLQ1x0vMROejBBvzw_zwk379uvp2eZZc32_PTk8tMSclkBiibUvdVVSCgKkBBAU2pdFezUpd9I7gqqkLoBkWK1HWd6DWru77grIMGQB6Sz8vevR9_TylsO5ig0NrlW63Iec3TS2Wd6KcXdDdOPoV9VrlgsqpFmdSXRSk_huCxb_feDODnlrP2uYM2ddD-6yDZ48XeGYvz67C9uL5dJp4AQV-Ncw</recordid><startdate>202010</startdate><enddate>202010</enddate><creator>Sion, Ana</creator><creator>Bruña Fernández, Ricardo</creator><creator>Martínez Maldonado, Andrés</creator><creator>Domínguez Centeno, Isabel</creator><creator>Torrado‐Carvajal, Angel</creator><creator>Rubio, Gabriel</creator><creator>Pereda, Ernesto</creator><creator>Jurado‐Barba, Rosa</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1117-8387</orcidid><orcidid>https://orcid.org/0000-0003-1007-900X</orcidid><orcidid>https://orcid.org/0000-0002-1031-5124</orcidid><orcidid>https://orcid.org/0000-0002-1171-1508</orcidid><orcidid>https://orcid.org/0000-0001-5965-164X</orcidid><orcidid>https://orcid.org/0000-0002-1540-2809</orcidid><orcidid>https://orcid.org/0000-0003-1944-1212</orcidid><orcidid>https://orcid.org/0000-0001-9597-0170</orcidid></search><sort><creationdate>202010</creationdate><title>Resting‐state connectivity and network parameter analysis in alcohol‐dependent males. A simultaneous EEG‐MEG study</title><author>Sion, Ana ; Bruña Fernández, Ricardo ; Martínez Maldonado, Andrés ; Domínguez Centeno, Isabel ; Torrado‐Carvajal, Angel ; Rubio, Gabriel ; Pereda, Ernesto ; Jurado‐Barba, Rosa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3303-ae396df775eaec5aca5a96cdb806d6f921c5752d9e2009bbb2fd08bf510ba9aa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Alcohol</topic><topic>alcohol dependence</topic><topic>Alcohols</topic><topic>Brain</topic><topic>Cerebral hemispheres</topic><topic>Clustering</topic><topic>Computation</topic><topic>Connectivity analysis</topic><topic>Dependence</topic><topic>Drug dependence</topic><topic>EEG</topic><topic>Efficiency</topic><topic>Electroencephalography</topic><topic>Frequency dependence</topic><topic>functional connectivity</topic><topic>Hemispheres</topic><topic>Locking</topic><topic>Magnetoencephalography</topic><topic>Males</topic><topic>Medical imaging</topic><topic>MEG</topic><topic>Network analysis</topic><topic>network parameters</topic><topic>Neural networks</topic><topic>Neuroimaging</topic><topic>Parameters</topic><topic>phase‐lag synchronization</topic><topic>Synchronism</topic><topic>Synchronization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sion, Ana</creatorcontrib><creatorcontrib>Bruña Fernández, Ricardo</creatorcontrib><creatorcontrib>Martínez Maldonado, Andrés</creatorcontrib><creatorcontrib>Domínguez Centeno, Isabel</creatorcontrib><creatorcontrib>Torrado‐Carvajal, Angel</creatorcontrib><creatorcontrib>Rubio, Gabriel</creatorcontrib><creatorcontrib>Pereda, Ernesto</creatorcontrib><creatorcontrib>Jurado‐Barba, Rosa</creatorcontrib><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of neuroscience research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sion, Ana</au><au>Bruña Fernández, Ricardo</au><au>Martínez Maldonado, Andrés</au><au>Domínguez Centeno, Isabel</au><au>Torrado‐Carvajal, Angel</au><au>Rubio, Gabriel</au><au>Pereda, Ernesto</au><au>Jurado‐Barba, Rosa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Resting‐state connectivity and network parameter analysis in alcohol‐dependent males. A simultaneous EEG‐MEG study</atitle><jtitle>Journal of neuroscience research</jtitle><date>2020-10</date><risdate>2020</risdate><volume>98</volume><issue>10</issue><spage>1857</spage><epage>1876</epage><pages>1857-1876</pages><issn>0360-4012</issn><eissn>1097-4547</eissn><abstract>There is supporting evidence of alcohol negative effects on the brain: neuroimaging and psychophysiological studies finding anatomical and functional connectivity (FC) changes associated with the dependence process. Thus, the aim of this work was to evaluate brain FC and network characteristics of alcohol‐dependent individuals in resting state. For this study, we included males diagnosed with alcohol dependence (N = 25) and a group of healthy individuals (N = 23). Simultaneous EEG‐MEG (electroencephalographic and magnetoencephalographic) activity was recorded in 5 min of eyes‐closed resting state. EEG‐MEG activity was preprocessed and FC was computed through the leakage‐corrected version of phase locking value (ciPLV). Additionally, local (degree, efficiency, clustering) and global (efficiency, characteristic path length) network parameters were computed. Connectivity analysis showed an increase in phase‐lagged synchronization, mainly between frontal and frontotemporal regions, in high beta band, and a decrease in interhemispheric gamma, for alcohol‐dependent individuals. Network analysis revealed intergroup differences at the local level for high beta, indicating higher degree, clustering, and efficiency, mostly at frontal nodes, together with a decrease in these measures at more posterior sites for patients’ group. The hyper‐synchronization in beta, next to the hypo‐synchronization in gamma, could indicate an alteration in communication between hemispheres, but also a possible functional compensation mechanism in neural circuits. This could be also supported by network characteristic data, where local alterations in communication are observed.
Alcohol‐dependent individuals present a differential pattern of resting‐state EEG‐MEG connectivity, as well as local communication alterations in brain network. Results point toward difficulties in information flow efficiency and cost, and a possible compensatory effort.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/jnr.24673</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0002-1117-8387</orcidid><orcidid>https://orcid.org/0000-0003-1007-900X</orcidid><orcidid>https://orcid.org/0000-0002-1031-5124</orcidid><orcidid>https://orcid.org/0000-0002-1171-1508</orcidid><orcidid>https://orcid.org/0000-0001-5965-164X</orcidid><orcidid>https://orcid.org/0000-0002-1540-2809</orcidid><orcidid>https://orcid.org/0000-0003-1944-1212</orcidid><orcidid>https://orcid.org/0000-0001-9597-0170</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0360-4012 |
ispartof | Journal of neuroscience research, 2020-10, Vol.98 (10), p.1857-1876 |
issn | 0360-4012 1097-4547 |
language | eng |
recordid | cdi_proquest_miscellaneous_2418130368 |
source | Wiley |
subjects | Alcohol alcohol dependence Alcohols Brain Cerebral hemispheres Clustering Computation Connectivity analysis Dependence Drug dependence EEG Efficiency Electroencephalography Frequency dependence functional connectivity Hemispheres Locking Magnetoencephalography Males Medical imaging MEG Network analysis network parameters Neural networks Neuroimaging Parameters phase‐lag synchronization Synchronism Synchronization |
title | Resting‐state connectivity and network parameter analysis in alcohol‐dependent males. A simultaneous EEG‐MEG study |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T03%3A54%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Resting%E2%80%90state%20connectivity%20and%20network%20parameter%20analysis%20in%20alcohol%E2%80%90dependent%20males.%20A%20simultaneous%20EEG%E2%80%90MEG%20study&rft.jtitle=Journal%20of%20neuroscience%20research&rft.au=Sion,%20Ana&rft.date=2020-10&rft.volume=98&rft.issue=10&rft.spage=1857&rft.epage=1876&rft.pages=1857-1876&rft.issn=0360-4012&rft.eissn=1097-4547&rft_id=info:doi/10.1002/jnr.24673&rft_dat=%3Cproquest_cross%3E2418130368%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3303-ae396df775eaec5aca5a96cdb806d6f921c5752d9e2009bbb2fd08bf510ba9aa3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2442037826&rft_id=info:pmid/&rfr_iscdi=true |