Loading…

Resting‐state connectivity and network parameter analysis in alcohol‐dependent males. A simultaneous EEG‐MEG study

There is supporting evidence of alcohol negative effects on the brain: neuroimaging and psychophysiological studies finding anatomical and functional connectivity (FC) changes associated with the dependence process. Thus, the aim of this work was to evaluate brain FC and network characteristics of a...

Full description

Saved in:
Bibliographic Details
Published in:Journal of neuroscience research 2020-10, Vol.98 (10), p.1857-1876
Main Authors: Sion, Ana, Bruña Fernández, Ricardo, Martínez Maldonado, Andrés, Domínguez Centeno, Isabel, Torrado‐Carvajal, Angel, Rubio, Gabriel, Pereda, Ernesto, Jurado‐Barba, Rosa
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3303-ae396df775eaec5aca5a96cdb806d6f921c5752d9e2009bbb2fd08bf510ba9aa3
cites cdi_FETCH-LOGICAL-c3303-ae396df775eaec5aca5a96cdb806d6f921c5752d9e2009bbb2fd08bf510ba9aa3
container_end_page 1876
container_issue 10
container_start_page 1857
container_title Journal of neuroscience research
container_volume 98
creator Sion, Ana
Bruña Fernández, Ricardo
Martínez Maldonado, Andrés
Domínguez Centeno, Isabel
Torrado‐Carvajal, Angel
Rubio, Gabriel
Pereda, Ernesto
Jurado‐Barba, Rosa
description There is supporting evidence of alcohol negative effects on the brain: neuroimaging and psychophysiological studies finding anatomical and functional connectivity (FC) changes associated with the dependence process. Thus, the aim of this work was to evaluate brain FC and network characteristics of alcohol‐dependent individuals in resting state. For this study, we included males diagnosed with alcohol dependence (N = 25) and a group of healthy individuals (N = 23). Simultaneous EEG‐MEG (electroencephalographic and magnetoencephalographic) activity was recorded in 5 min of eyes‐closed resting state. EEG‐MEG activity was preprocessed and FC was computed through the leakage‐corrected version of phase locking value (ciPLV). Additionally, local (degree, efficiency, clustering) and global (efficiency, characteristic path length) network parameters were computed. Connectivity analysis showed an increase in phase‐lagged synchronization, mainly between frontal and frontotemporal regions, in high beta band, and a decrease in interhemispheric gamma, for alcohol‐dependent individuals. Network analysis revealed intergroup differences at the local level for high beta, indicating higher degree, clustering, and efficiency, mostly at frontal nodes, together with a decrease in these measures at more posterior sites for patients’ group. The hyper‐synchronization in beta, next to the hypo‐synchronization in gamma, could indicate an alteration in communication between hemispheres, but also a possible functional compensation mechanism in neural circuits. This could be also supported by network characteristic data, where local alterations in communication are observed. Alcohol‐dependent individuals present a differential pattern of resting‐state EEG‐MEG connectivity, as well as local communication alterations in brain network. Results point toward difficulties in information flow efficiency and cost, and a possible compensatory effort.
doi_str_mv 10.1002/jnr.24673
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2418130368</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2418130368</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3303-ae396df775eaec5aca5a96cdb806d6f921c5752d9e2009bbb2fd08bf510ba9aa3</originalsourceid><addsrcrecordid>eNp10ctu1DAUBmALUYmhZcEbWGIDi0x9yXVZVcO0VS9SBevoxD4BD44z2A5tdn2EPiNPUpewqtSVJes7x_71E_KRszVnTBzvnF-LvKzkG7LirKmyvMirt2TFZMmynHHxjrwPYccYa5pCrsj9LYZo3I-_D48hQkSqRudQRfPHxJmC09RhvBv9L7oHDwNG9OkW7BxMoMZRsGr8Odo0rnGPTqOLdACLYU1PaDDDZCM4HKdAN5ttUlebLQ1x0vMROejBBvzw_zwk379uvp2eZZc32_PTk8tMSclkBiibUvdVVSCgKkBBAU2pdFezUpd9I7gqqkLoBkWK1HWd6DWru77grIMGQB6Sz8vevR9_TylsO5ig0NrlW63Iec3TS2Wd6KcXdDdOPoV9VrlgsqpFmdSXRSk_huCxb_feDODnlrP2uYM2ddD-6yDZ48XeGYvz67C9uL5dJp4AQV-Ncw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2442037826</pqid></control><display><type>article</type><title>Resting‐state connectivity and network parameter analysis in alcohol‐dependent males. A simultaneous EEG‐MEG study</title><source>Wiley</source><creator>Sion, Ana ; Bruña Fernández, Ricardo ; Martínez Maldonado, Andrés ; Domínguez Centeno, Isabel ; Torrado‐Carvajal, Angel ; Rubio, Gabriel ; Pereda, Ernesto ; Jurado‐Barba, Rosa</creator><creatorcontrib>Sion, Ana ; Bruña Fernández, Ricardo ; Martínez Maldonado, Andrés ; Domínguez Centeno, Isabel ; Torrado‐Carvajal, Angel ; Rubio, Gabriel ; Pereda, Ernesto ; Jurado‐Barba, Rosa</creatorcontrib><description>There is supporting evidence of alcohol negative effects on the brain: neuroimaging and psychophysiological studies finding anatomical and functional connectivity (FC) changes associated with the dependence process. Thus, the aim of this work was to evaluate brain FC and network characteristics of alcohol‐dependent individuals in resting state. For this study, we included males diagnosed with alcohol dependence (N = 25) and a group of healthy individuals (N = 23). Simultaneous EEG‐MEG (electroencephalographic and magnetoencephalographic) activity was recorded in 5 min of eyes‐closed resting state. EEG‐MEG activity was preprocessed and FC was computed through the leakage‐corrected version of phase locking value (ciPLV). Additionally, local (degree, efficiency, clustering) and global (efficiency, characteristic path length) network parameters were computed. Connectivity analysis showed an increase in phase‐lagged synchronization, mainly between frontal and frontotemporal regions, in high beta band, and a decrease in interhemispheric gamma, for alcohol‐dependent individuals. Network analysis revealed intergroup differences at the local level for high beta, indicating higher degree, clustering, and efficiency, mostly at frontal nodes, together with a decrease in these measures at more posterior sites for patients’ group. The hyper‐synchronization in beta, next to the hypo‐synchronization in gamma, could indicate an alteration in communication between hemispheres, but also a possible functional compensation mechanism in neural circuits. This could be also supported by network characteristic data, where local alterations in communication are observed. Alcohol‐dependent individuals present a differential pattern of resting‐state EEG‐MEG connectivity, as well as local communication alterations in brain network. Results point toward difficulties in information flow efficiency and cost, and a possible compensatory effort.</description><identifier>ISSN: 0360-4012</identifier><identifier>EISSN: 1097-4547</identifier><identifier>DOI: 10.1002/jnr.24673</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Alcohol ; alcohol dependence ; Alcohols ; Brain ; Cerebral hemispheres ; Clustering ; Computation ; Connectivity analysis ; Dependence ; Drug dependence ; EEG ; Efficiency ; Electroencephalography ; Frequency dependence ; functional connectivity ; Hemispheres ; Locking ; Magnetoencephalography ; Males ; Medical imaging ; MEG ; Network analysis ; network parameters ; Neural networks ; Neuroimaging ; Parameters ; phase‐lag synchronization ; Synchronism ; Synchronization</subject><ispartof>Journal of neuroscience research, 2020-10, Vol.98 (10), p.1857-1876</ispartof><rights>2020 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3303-ae396df775eaec5aca5a96cdb806d6f921c5752d9e2009bbb2fd08bf510ba9aa3</citedby><cites>FETCH-LOGICAL-c3303-ae396df775eaec5aca5a96cdb806d6f921c5752d9e2009bbb2fd08bf510ba9aa3</cites><orcidid>0000-0002-1117-8387 ; 0000-0003-1007-900X ; 0000-0002-1031-5124 ; 0000-0002-1171-1508 ; 0000-0001-5965-164X ; 0000-0002-1540-2809 ; 0000-0003-1944-1212 ; 0000-0001-9597-0170</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Sion, Ana</creatorcontrib><creatorcontrib>Bruña Fernández, Ricardo</creatorcontrib><creatorcontrib>Martínez Maldonado, Andrés</creatorcontrib><creatorcontrib>Domínguez Centeno, Isabel</creatorcontrib><creatorcontrib>Torrado‐Carvajal, Angel</creatorcontrib><creatorcontrib>Rubio, Gabriel</creatorcontrib><creatorcontrib>Pereda, Ernesto</creatorcontrib><creatorcontrib>Jurado‐Barba, Rosa</creatorcontrib><title>Resting‐state connectivity and network parameter analysis in alcohol‐dependent males. A simultaneous EEG‐MEG study</title><title>Journal of neuroscience research</title><description>There is supporting evidence of alcohol negative effects on the brain: neuroimaging and psychophysiological studies finding anatomical and functional connectivity (FC) changes associated with the dependence process. Thus, the aim of this work was to evaluate brain FC and network characteristics of alcohol‐dependent individuals in resting state. For this study, we included males diagnosed with alcohol dependence (N = 25) and a group of healthy individuals (N = 23). Simultaneous EEG‐MEG (electroencephalographic and magnetoencephalographic) activity was recorded in 5 min of eyes‐closed resting state. EEG‐MEG activity was preprocessed and FC was computed through the leakage‐corrected version of phase locking value (ciPLV). Additionally, local (degree, efficiency, clustering) and global (efficiency, characteristic path length) network parameters were computed. Connectivity analysis showed an increase in phase‐lagged synchronization, mainly between frontal and frontotemporal regions, in high beta band, and a decrease in interhemispheric gamma, for alcohol‐dependent individuals. Network analysis revealed intergroup differences at the local level for high beta, indicating higher degree, clustering, and efficiency, mostly at frontal nodes, together with a decrease in these measures at more posterior sites for patients’ group. The hyper‐synchronization in beta, next to the hypo‐synchronization in gamma, could indicate an alteration in communication between hemispheres, but also a possible functional compensation mechanism in neural circuits. This could be also supported by network characteristic data, where local alterations in communication are observed. Alcohol‐dependent individuals present a differential pattern of resting‐state EEG‐MEG connectivity, as well as local communication alterations in brain network. Results point toward difficulties in information flow efficiency and cost, and a possible compensatory effort.</description><subject>Alcohol</subject><subject>alcohol dependence</subject><subject>Alcohols</subject><subject>Brain</subject><subject>Cerebral hemispheres</subject><subject>Clustering</subject><subject>Computation</subject><subject>Connectivity analysis</subject><subject>Dependence</subject><subject>Drug dependence</subject><subject>EEG</subject><subject>Efficiency</subject><subject>Electroencephalography</subject><subject>Frequency dependence</subject><subject>functional connectivity</subject><subject>Hemispheres</subject><subject>Locking</subject><subject>Magnetoencephalography</subject><subject>Males</subject><subject>Medical imaging</subject><subject>MEG</subject><subject>Network analysis</subject><subject>network parameters</subject><subject>Neural networks</subject><subject>Neuroimaging</subject><subject>Parameters</subject><subject>phase‐lag synchronization</subject><subject>Synchronism</subject><subject>Synchronization</subject><issn>0360-4012</issn><issn>1097-4547</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp10ctu1DAUBmALUYmhZcEbWGIDi0x9yXVZVcO0VS9SBevoxD4BD44z2A5tdn2EPiNPUpewqtSVJes7x_71E_KRszVnTBzvnF-LvKzkG7LirKmyvMirt2TFZMmynHHxjrwPYccYa5pCrsj9LYZo3I-_D48hQkSqRudQRfPHxJmC09RhvBv9L7oHDwNG9OkW7BxMoMZRsGr8Odo0rnGPTqOLdACLYU1PaDDDZCM4HKdAN5ttUlebLQ1x0vMROejBBvzw_zwk379uvp2eZZc32_PTk8tMSclkBiibUvdVVSCgKkBBAU2pdFezUpd9I7gqqkLoBkWK1HWd6DWru77grIMGQB6Sz8vevR9_TylsO5ig0NrlW63Iec3TS2Wd6KcXdDdOPoV9VrlgsqpFmdSXRSk_huCxb_feDODnlrP2uYM2ddD-6yDZ48XeGYvz67C9uL5dJp4AQV-Ncw</recordid><startdate>202010</startdate><enddate>202010</enddate><creator>Sion, Ana</creator><creator>Bruña Fernández, Ricardo</creator><creator>Martínez Maldonado, Andrés</creator><creator>Domínguez Centeno, Isabel</creator><creator>Torrado‐Carvajal, Angel</creator><creator>Rubio, Gabriel</creator><creator>Pereda, Ernesto</creator><creator>Jurado‐Barba, Rosa</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1117-8387</orcidid><orcidid>https://orcid.org/0000-0003-1007-900X</orcidid><orcidid>https://orcid.org/0000-0002-1031-5124</orcidid><orcidid>https://orcid.org/0000-0002-1171-1508</orcidid><orcidid>https://orcid.org/0000-0001-5965-164X</orcidid><orcidid>https://orcid.org/0000-0002-1540-2809</orcidid><orcidid>https://orcid.org/0000-0003-1944-1212</orcidid><orcidid>https://orcid.org/0000-0001-9597-0170</orcidid></search><sort><creationdate>202010</creationdate><title>Resting‐state connectivity and network parameter analysis in alcohol‐dependent males. A simultaneous EEG‐MEG study</title><author>Sion, Ana ; Bruña Fernández, Ricardo ; Martínez Maldonado, Andrés ; Domínguez Centeno, Isabel ; Torrado‐Carvajal, Angel ; Rubio, Gabriel ; Pereda, Ernesto ; Jurado‐Barba, Rosa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3303-ae396df775eaec5aca5a96cdb806d6f921c5752d9e2009bbb2fd08bf510ba9aa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Alcohol</topic><topic>alcohol dependence</topic><topic>Alcohols</topic><topic>Brain</topic><topic>Cerebral hemispheres</topic><topic>Clustering</topic><topic>Computation</topic><topic>Connectivity analysis</topic><topic>Dependence</topic><topic>Drug dependence</topic><topic>EEG</topic><topic>Efficiency</topic><topic>Electroencephalography</topic><topic>Frequency dependence</topic><topic>functional connectivity</topic><topic>Hemispheres</topic><topic>Locking</topic><topic>Magnetoencephalography</topic><topic>Males</topic><topic>Medical imaging</topic><topic>MEG</topic><topic>Network analysis</topic><topic>network parameters</topic><topic>Neural networks</topic><topic>Neuroimaging</topic><topic>Parameters</topic><topic>phase‐lag synchronization</topic><topic>Synchronism</topic><topic>Synchronization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sion, Ana</creatorcontrib><creatorcontrib>Bruña Fernández, Ricardo</creatorcontrib><creatorcontrib>Martínez Maldonado, Andrés</creatorcontrib><creatorcontrib>Domínguez Centeno, Isabel</creatorcontrib><creatorcontrib>Torrado‐Carvajal, Angel</creatorcontrib><creatorcontrib>Rubio, Gabriel</creatorcontrib><creatorcontrib>Pereda, Ernesto</creatorcontrib><creatorcontrib>Jurado‐Barba, Rosa</creatorcontrib><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of neuroscience research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sion, Ana</au><au>Bruña Fernández, Ricardo</au><au>Martínez Maldonado, Andrés</au><au>Domínguez Centeno, Isabel</au><au>Torrado‐Carvajal, Angel</au><au>Rubio, Gabriel</au><au>Pereda, Ernesto</au><au>Jurado‐Barba, Rosa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Resting‐state connectivity and network parameter analysis in alcohol‐dependent males. A simultaneous EEG‐MEG study</atitle><jtitle>Journal of neuroscience research</jtitle><date>2020-10</date><risdate>2020</risdate><volume>98</volume><issue>10</issue><spage>1857</spage><epage>1876</epage><pages>1857-1876</pages><issn>0360-4012</issn><eissn>1097-4547</eissn><abstract>There is supporting evidence of alcohol negative effects on the brain: neuroimaging and psychophysiological studies finding anatomical and functional connectivity (FC) changes associated with the dependence process. Thus, the aim of this work was to evaluate brain FC and network characteristics of alcohol‐dependent individuals in resting state. For this study, we included males diagnosed with alcohol dependence (N = 25) and a group of healthy individuals (N = 23). Simultaneous EEG‐MEG (electroencephalographic and magnetoencephalographic) activity was recorded in 5 min of eyes‐closed resting state. EEG‐MEG activity was preprocessed and FC was computed through the leakage‐corrected version of phase locking value (ciPLV). Additionally, local (degree, efficiency, clustering) and global (efficiency, characteristic path length) network parameters were computed. Connectivity analysis showed an increase in phase‐lagged synchronization, mainly between frontal and frontotemporal regions, in high beta band, and a decrease in interhemispheric gamma, for alcohol‐dependent individuals. Network analysis revealed intergroup differences at the local level for high beta, indicating higher degree, clustering, and efficiency, mostly at frontal nodes, together with a decrease in these measures at more posterior sites for patients’ group. The hyper‐synchronization in beta, next to the hypo‐synchronization in gamma, could indicate an alteration in communication between hemispheres, but also a possible functional compensation mechanism in neural circuits. This could be also supported by network characteristic data, where local alterations in communication are observed. Alcohol‐dependent individuals present a differential pattern of resting‐state EEG‐MEG connectivity, as well as local communication alterations in brain network. Results point toward difficulties in information flow efficiency and cost, and a possible compensatory effort.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/jnr.24673</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0002-1117-8387</orcidid><orcidid>https://orcid.org/0000-0003-1007-900X</orcidid><orcidid>https://orcid.org/0000-0002-1031-5124</orcidid><orcidid>https://orcid.org/0000-0002-1171-1508</orcidid><orcidid>https://orcid.org/0000-0001-5965-164X</orcidid><orcidid>https://orcid.org/0000-0002-1540-2809</orcidid><orcidid>https://orcid.org/0000-0003-1944-1212</orcidid><orcidid>https://orcid.org/0000-0001-9597-0170</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0360-4012
ispartof Journal of neuroscience research, 2020-10, Vol.98 (10), p.1857-1876
issn 0360-4012
1097-4547
language eng
recordid cdi_proquest_miscellaneous_2418130368
source Wiley
subjects Alcohol
alcohol dependence
Alcohols
Brain
Cerebral hemispheres
Clustering
Computation
Connectivity analysis
Dependence
Drug dependence
EEG
Efficiency
Electroencephalography
Frequency dependence
functional connectivity
Hemispheres
Locking
Magnetoencephalography
Males
Medical imaging
MEG
Network analysis
network parameters
Neural networks
Neuroimaging
Parameters
phase‐lag synchronization
Synchronism
Synchronization
title Resting‐state connectivity and network parameter analysis in alcohol‐dependent males. A simultaneous EEG‐MEG study
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T03%3A54%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Resting%E2%80%90state%20connectivity%20and%20network%20parameter%20analysis%20in%20alcohol%E2%80%90dependent%20males.%20A%20simultaneous%20EEG%E2%80%90MEG%20study&rft.jtitle=Journal%20of%20neuroscience%20research&rft.au=Sion,%20Ana&rft.date=2020-10&rft.volume=98&rft.issue=10&rft.spage=1857&rft.epage=1876&rft.pages=1857-1876&rft.issn=0360-4012&rft.eissn=1097-4547&rft_id=info:doi/10.1002/jnr.24673&rft_dat=%3Cproquest_cross%3E2418130368%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3303-ae396df775eaec5aca5a96cdb806d6f921c5752d9e2009bbb2fd08bf510ba9aa3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2442037826&rft_id=info:pmid/&rfr_iscdi=true