Loading…

Controlling the Self-Assembly of New Metastable Tin Vanadium Selenides Using Composition and Nanoarchitecture of Precursors

In solid-state chemistry, the direct reaction of elements at low temperatures is limited by low solid-state interdiffusion rates. This and the limited number of processing parameters often prevent the synthesis of metastable compounds. Precisely controlling the number of atoms and nanoarchitecture o...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the American Chemical Society 2020-07, Vol.142 (30), p.13145-13154
Main Authors: Mesoza Cordova, Dmitri Leo, Kam, Taryn Mieko, Gannon, Renae N, Lu, Ping, Johnson, David C
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a367t-89426634cf5040de3eab67a29844a03a4f9576ac2d21b5a6885f64c1b39946713
cites cdi_FETCH-LOGICAL-a367t-89426634cf5040de3eab67a29844a03a4f9576ac2d21b5a6885f64c1b39946713
container_end_page 13154
container_issue 30
container_start_page 13145
container_title Journal of the American Chemical Society
container_volume 142
creator Mesoza Cordova, Dmitri Leo
Kam, Taryn Mieko
Gannon, Renae N
Lu, Ping
Johnson, David C
description In solid-state chemistry, the direct reaction of elements at low temperatures is limited by low solid-state interdiffusion rates. This and the limited number of processing parameters often prevent the synthesis of metastable compounds. Precisely controlling the number of atoms and nanoarchitecture of layered elemental precursors enabled the selective synthesis of two closely related metastable tin vanadium selenides via near-diffusionless reactions at low temperatures. Although the nanoarchitectures of the precursors required to form [(SnSe2)0.80]1(VSe2)1 and [(SnSe)1.15]1(VSe2)1 are very similar, controlling the local composition of the Sn|Se layers in the precursors enables the selective synthesis of either compound. The metastable alloy Sn x V1–x Se2 was preferentially formed over [(SnSe2)0.80]1(VSe2)1, which has the identical composition, by modifying the nanoarchitecture of the precursor. Ex situ in-plane X-ray diffraction and X-ray reflectivity collected as a function of annealing temperature provided information on lateral and perpendicular growth of [(SnSe2)0.80]1(VSe2)1. The presence of Laue oscillations throughout the self-assembly provided atomic-scale information on the thickness of the [(SnSe2)0.80]1(VSe2)1 domains, giving insights into the self-assembly process. A reaction mechanism is proposed and used to rationalize how composition and nanoarchitecture control the reaction pathway through the free energy landscape.
doi_str_mv 10.1021/jacs.0c05505
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2419089545</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2419089545</sourcerecordid><originalsourceid>FETCH-LOGICAL-a367t-89426634cf5040de3eab67a29844a03a4f9576ac2d21b5a6885f64c1b39946713</originalsourceid><addsrcrecordid>eNptkMFq3DAQQEVpoNskt36Ajj3UW0mWZPsYljYpbNJANrmasTxutNjSViNTQn4-axLoJadhhseDeYx9kWIthZLf9-BoLZwwRpgPbCWNEoWRyn5kKyGEKqralp_YZ6L9cdWqliv2vIkhpziOPvzh-RH5HY5DcUGEUzc-8TjwG_zHrzEDZehG5Dsf-AME6P08LTAG3yPxe1oEmzgdIvnsY-AQen4DIUJyjz6jy3PCxXeb0M2JYqIzdjLASHj-Nk_Z_c8fu81Vsf19-WtzsS2gtFUu6kYra0vtBiO06LFE6GwFqqm1BlGCHhpTWXCqV7IzYOvaDFY72ZVNo20ly1P29dV7SPHvjJTbyZPDcYSAcaZWadmIujHaHNFvr6hLkSjh0B6SnyA9tVK0S-N2ady-Nf5vXo77OKdw_ON99AUGqH3K</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2419089545</pqid></control><display><type>article</type><title>Controlling the Self-Assembly of New Metastable Tin Vanadium Selenides Using Composition and Nanoarchitecture of Precursors</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Mesoza Cordova, Dmitri Leo ; Kam, Taryn Mieko ; Gannon, Renae N ; Lu, Ping ; Johnson, David C</creator><creatorcontrib>Mesoza Cordova, Dmitri Leo ; Kam, Taryn Mieko ; Gannon, Renae N ; Lu, Ping ; Johnson, David C</creatorcontrib><description>In solid-state chemistry, the direct reaction of elements at low temperatures is limited by low solid-state interdiffusion rates. This and the limited number of processing parameters often prevent the synthesis of metastable compounds. Precisely controlling the number of atoms and nanoarchitecture of layered elemental precursors enabled the selective synthesis of two closely related metastable tin vanadium selenides via near-diffusionless reactions at low temperatures. Although the nanoarchitectures of the precursors required to form [(SnSe2)0.80]1(VSe2)1 and [(SnSe)1.15]1(VSe2)1 are very similar, controlling the local composition of the Sn|Se layers in the precursors enables the selective synthesis of either compound. The metastable alloy Sn x V1–x Se2 was preferentially formed over [(SnSe2)0.80]1(VSe2)1, which has the identical composition, by modifying the nanoarchitecture of the precursor. Ex situ in-plane X-ray diffraction and X-ray reflectivity collected as a function of annealing temperature provided information on lateral and perpendicular growth of [(SnSe2)0.80]1(VSe2)1. The presence of Laue oscillations throughout the self-assembly provided atomic-scale information on the thickness of the [(SnSe2)0.80]1(VSe2)1 domains, giving insights into the self-assembly process. A reaction mechanism is proposed and used to rationalize how composition and nanoarchitecture control the reaction pathway through the free energy landscape.</description><identifier>ISSN: 0002-7863</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/jacs.0c05505</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>Journal of the American Chemical Society, 2020-07, Vol.142 (30), p.13145-13154</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a367t-89426634cf5040de3eab67a29844a03a4f9576ac2d21b5a6885f64c1b39946713</citedby><cites>FETCH-LOGICAL-a367t-89426634cf5040de3eab67a29844a03a4f9576ac2d21b5a6885f64c1b39946713</cites><orcidid>0000-0002-1118-0997 ; 0000-0002-7527-8950</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Mesoza Cordova, Dmitri Leo</creatorcontrib><creatorcontrib>Kam, Taryn Mieko</creatorcontrib><creatorcontrib>Gannon, Renae N</creatorcontrib><creatorcontrib>Lu, Ping</creatorcontrib><creatorcontrib>Johnson, David C</creatorcontrib><title>Controlling the Self-Assembly of New Metastable Tin Vanadium Selenides Using Composition and Nanoarchitecture of Precursors</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>In solid-state chemistry, the direct reaction of elements at low temperatures is limited by low solid-state interdiffusion rates. This and the limited number of processing parameters often prevent the synthesis of metastable compounds. Precisely controlling the number of atoms and nanoarchitecture of layered elemental precursors enabled the selective synthesis of two closely related metastable tin vanadium selenides via near-diffusionless reactions at low temperatures. Although the nanoarchitectures of the precursors required to form [(SnSe2)0.80]1(VSe2)1 and [(SnSe)1.15]1(VSe2)1 are very similar, controlling the local composition of the Sn|Se layers in the precursors enables the selective synthesis of either compound. The metastable alloy Sn x V1–x Se2 was preferentially formed over [(SnSe2)0.80]1(VSe2)1, which has the identical composition, by modifying the nanoarchitecture of the precursor. Ex situ in-plane X-ray diffraction and X-ray reflectivity collected as a function of annealing temperature provided information on lateral and perpendicular growth of [(SnSe2)0.80]1(VSe2)1. The presence of Laue oscillations throughout the self-assembly provided atomic-scale information on the thickness of the [(SnSe2)0.80]1(VSe2)1 domains, giving insights into the self-assembly process. A reaction mechanism is proposed and used to rationalize how composition and nanoarchitecture control the reaction pathway through the free energy landscape.</description><issn>0002-7863</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNptkMFq3DAQQEVpoNskt36Ajj3UW0mWZPsYljYpbNJANrmasTxutNjSViNTQn4-axLoJadhhseDeYx9kWIthZLf9-BoLZwwRpgPbCWNEoWRyn5kKyGEKqralp_YZ6L9cdWqliv2vIkhpziOPvzh-RH5HY5DcUGEUzc-8TjwG_zHrzEDZehG5Dsf-AME6P08LTAG3yPxe1oEmzgdIvnsY-AQen4DIUJyjz6jy3PCxXeb0M2JYqIzdjLASHj-Nk_Z_c8fu81Vsf19-WtzsS2gtFUu6kYra0vtBiO06LFE6GwFqqm1BlGCHhpTWXCqV7IzYOvaDFY72ZVNo20ly1P29dV7SPHvjJTbyZPDcYSAcaZWadmIujHaHNFvr6hLkSjh0B6SnyA9tVK0S-N2ady-Nf5vXo77OKdw_ON99AUGqH3K</recordid><startdate>20200729</startdate><enddate>20200729</enddate><creator>Mesoza Cordova, Dmitri Leo</creator><creator>Kam, Taryn Mieko</creator><creator>Gannon, Renae N</creator><creator>Lu, Ping</creator><creator>Johnson, David C</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1118-0997</orcidid><orcidid>https://orcid.org/0000-0002-7527-8950</orcidid></search><sort><creationdate>20200729</creationdate><title>Controlling the Self-Assembly of New Metastable Tin Vanadium Selenides Using Composition and Nanoarchitecture of Precursors</title><author>Mesoza Cordova, Dmitri Leo ; Kam, Taryn Mieko ; Gannon, Renae N ; Lu, Ping ; Johnson, David C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a367t-89426634cf5040de3eab67a29844a03a4f9576ac2d21b5a6885f64c1b39946713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mesoza Cordova, Dmitri Leo</creatorcontrib><creatorcontrib>Kam, Taryn Mieko</creatorcontrib><creatorcontrib>Gannon, Renae N</creatorcontrib><creatorcontrib>Lu, Ping</creatorcontrib><creatorcontrib>Johnson, David C</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mesoza Cordova, Dmitri Leo</au><au>Kam, Taryn Mieko</au><au>Gannon, Renae N</au><au>Lu, Ping</au><au>Johnson, David C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Controlling the Self-Assembly of New Metastable Tin Vanadium Selenides Using Composition and Nanoarchitecture of Precursors</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2020-07-29</date><risdate>2020</risdate><volume>142</volume><issue>30</issue><spage>13145</spage><epage>13154</epage><pages>13145-13154</pages><issn>0002-7863</issn><eissn>1520-5126</eissn><abstract>In solid-state chemistry, the direct reaction of elements at low temperatures is limited by low solid-state interdiffusion rates. This and the limited number of processing parameters often prevent the synthesis of metastable compounds. Precisely controlling the number of atoms and nanoarchitecture of layered elemental precursors enabled the selective synthesis of two closely related metastable tin vanadium selenides via near-diffusionless reactions at low temperatures. Although the nanoarchitectures of the precursors required to form [(SnSe2)0.80]1(VSe2)1 and [(SnSe)1.15]1(VSe2)1 are very similar, controlling the local composition of the Sn|Se layers in the precursors enables the selective synthesis of either compound. The metastable alloy Sn x V1–x Se2 was preferentially formed over [(SnSe2)0.80]1(VSe2)1, which has the identical composition, by modifying the nanoarchitecture of the precursor. Ex situ in-plane X-ray diffraction and X-ray reflectivity collected as a function of annealing temperature provided information on lateral and perpendicular growth of [(SnSe2)0.80]1(VSe2)1. The presence of Laue oscillations throughout the self-assembly provided atomic-scale information on the thickness of the [(SnSe2)0.80]1(VSe2)1 domains, giving insights into the self-assembly process. A reaction mechanism is proposed and used to rationalize how composition and nanoarchitecture control the reaction pathway through the free energy landscape.</abstract><pub>American Chemical Society</pub><doi>10.1021/jacs.0c05505</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-1118-0997</orcidid><orcidid>https://orcid.org/0000-0002-7527-8950</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0002-7863
ispartof Journal of the American Chemical Society, 2020-07, Vol.142 (30), p.13145-13154
issn 0002-7863
1520-5126
language eng
recordid cdi_proquest_miscellaneous_2419089545
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
title Controlling the Self-Assembly of New Metastable Tin Vanadium Selenides Using Composition and Nanoarchitecture of Precursors
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T02%3A42%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Controlling%20the%20Self-Assembly%20of%20New%20Metastable%20Tin%20Vanadium%20Selenides%20Using%20Composition%20and%20Nanoarchitecture%20of%20Precursors&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Mesoza%20Cordova,%20Dmitri%20Leo&rft.date=2020-07-29&rft.volume=142&rft.issue=30&rft.spage=13145&rft.epage=13154&rft.pages=13145-13154&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/jacs.0c05505&rft_dat=%3Cproquest_cross%3E2419089545%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a367t-89426634cf5040de3eab67a29844a03a4f9576ac2d21b5a6885f64c1b39946713%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2419089545&rft_id=info:pmid/&rfr_iscdi=true