Loading…
Computational method for highly constrained molecular dynamics of rigid bodies: Coarse-grained simulation of auxetic two-dimensional protein crystals
The increasing number of protein-based metamaterials demands reliable and efficient theoretical and computational methods to study the physicochemical properties they may display. In this regard, we develop a simulation strategy based on Molecular Dynamics (MD) that addresses the geometric degrees o...
Saved in:
Published in: | The Journal of chemical physics 2020-06, Vol.152 (24), p.244102-244102 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The increasing number of protein-based metamaterials demands reliable and efficient theoretical and computational methods to study the physicochemical properties they may display. In this regard, we develop a simulation strategy based on Molecular Dynamics (MD) that addresses the geometric degrees of freedom of an auxetic two-dimensional protein crystal. This model consists of a network of impenetrable rigid squares linked through massless rigid rods. Our MD methodology extends the well-known protocols SHAKE and RATTLE to include highly non-linear holonomic and non-holonomic constraints, with an emphasis on collision detection and response between anisotropic rigid bodies. The presented method enables the simulation of long-time dynamics with reasonably large time steps. The data extracted from the simulations allow the characterization of the dynamical correlations featured by the protein subunits, which show a persistent motional interdependence across the array. On the other hand, non-holonomic constraints (collisions between subunits) increase the number of inhomogeneous deformations of the network, thus driving it away from an isotropic response. Our work provides the first long-timescale simulation of the dynamics of protein crystals and offers insights into promising mechanical properties afforded by these materials. |
---|---|
ISSN: | 0021-9606 1089-7690 |
DOI: | 10.1063/5.0004518 |