Loading…
Catalytic Nanoframes and Beyond
The ever‐increasing need for the production and expenditure of sustainable energy is a result of the astonishing rate of consumption of fossil fuels and the accompanying environmental problems. Emphasis is being directed to the generation of sustainable energy by the fuel cell and water splitting te...
Saved in:
Published in: | Advanced materials (Weinheim) 2020-08, Vol.32 (33), p.e2001345-n/a |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The ever‐increasing need for the production and expenditure of sustainable energy is a result of the astonishing rate of consumption of fossil fuels and the accompanying environmental problems. Emphasis is being directed to the generation of sustainable energy by the fuel cell and water splitting technologies. Accordingly, the development of highly efficient electrocatalysts has attracted significant interest, as the fuel cell and water splitting technologies are critically dependent on their performance. Among numerous catalyst designs under investigation, nanoframe catalysts have an intrinsically large surface area per volume and a tunable composition, which impacts the number of catalytically active sites and their intrinsic catalytic activity, respectively. Nevertheless, the structural integrity of the nanoframe during electrochemical operation is an ongoing concern. Some significant advances in the field of nanoframe catalysts have been recently accomplished, specifically geared to resolving the catalytic stability concerns and significantly boosting the intrinsic catalytic activity of the active sites. Herein, general synthetic concepts of nanoframe structures and their structure‐dependent catalytic performance are summarized, along with recent notable advances in this field. A discussion on the remaining challenges and future directions, addressing the limitations of nanoframe catalysts, are also provided.
The general synthetic strategies for nanoframes and their application as electrocatalysts for fuel cell and water splitting technologies are described. The standing challenges in application of nanoframe catalysts as well as efforts to overcome them are also introduced, along with suggestions for the future direction of nanoframe‐based electrocatalysts. |
---|---|
ISSN: | 0935-9648 1521-4095 |
DOI: | 10.1002/adma.202001345 |