Loading…

Nanoparticle Charge and Size Control Foliar Delivery Efficiency to Plant Cells and Organelles

Fundamental and quantitative understanding of the interactions between nanoparticles and plant leaves is crucial for advancing the field of nanoenabled agriculture. Herein, we systematically investigated and modeled how ζ potential (−52.3 mV to +36.6 mV) and hydrodynamic size (1.7–18 nm) of hydrophi...

Full description

Saved in:
Bibliographic Details
Published in:ACS nano 2020-07, Vol.14 (7), p.7970-7986
Main Authors: Hu, Peiguang, An, Jing, Faulkner, Maquela M, Wu, Honghong, Li, Zhaohu, Tian, Xiaoli, Giraldo, Juan Pablo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a399t-435a38cf9c4bd7294fc89258f982ff39fd16cdab1f8949bdb366b232050fd32c3
cites cdi_FETCH-LOGICAL-a399t-435a38cf9c4bd7294fc89258f982ff39fd16cdab1f8949bdb366b232050fd32c3
container_end_page 7986
container_issue 7
container_start_page 7970
container_title ACS nano
container_volume 14
creator Hu, Peiguang
An, Jing
Faulkner, Maquela M
Wu, Honghong
Li, Zhaohu
Tian, Xiaoli
Giraldo, Juan Pablo
description Fundamental and quantitative understanding of the interactions between nanoparticles and plant leaves is crucial for advancing the field of nanoenabled agriculture. Herein, we systematically investigated and modeled how ζ potential (−52.3 mV to +36.6 mV) and hydrodynamic size (1.7–18 nm) of hydrophilic nanoparticles influence delivery efficiency and pathways to specific leaf cells and organelles. We studied interactions of nanoparticles of agricultural interest including carbon dots (CDs, 0.5 and 5 mg/mL), cerium oxide (CeO2, 0.5 mg/mL), and silica (SiO2, 0.5 mg/mL) nanoparticles with leaves of two major crop species having contrasting leaf anatomies: cotton (dicotyledon) and maize (monocotyledon). Biocompatible CDs allowed real-time tracking of nanoparticle translocation and distribution in planta by confocal fluorescence microscopy at high spatial (∼200 nm) and temporal (2–5 min) resolution. Nanoparticle formulations with surfactants (Silwet L-77) that reduced surface tension to 22 mN/m were found to be crucial for enabling rapid uptake (
doi_str_mv 10.1021/acsnano.9b09178
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2421111990</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2421111990</sourcerecordid><originalsourceid>FETCH-LOGICAL-a399t-435a38cf9c4bd7294fc89258f982ff39fd16cdab1f8949bdb366b232050fd32c3</originalsourceid><addsrcrecordid>eNp1kM1LAzEQxYMotlbP3iRHQbbNx34kR1lbFYoVVPAiSzab1C3ppia7Qv3rjXbtzbnMDPzeY-YBcI7RGCOCJ0L6RjR2zEvEccYOwBBzmkaIpa-H-znBA3Di_QqhJGNZegwGlKSExTEZgreHIN8I19bSKJi_C7dUUDQVfKq_wm6b1lkDZ9bUwsEbZepP5bZwqnUta9XILWwtfDSiaWGujPG_0oVbiiZsyp-CIy2MV2d9H4GX2fQ5v4vmi9v7_HoeCcp5G8U0EZRJzWVcVhnhsZaMk4RpzojWlOsKp7ISJdaMx7ysSpqmJaEEJUhXlEg6Apc7342zH53ybbGuvQwnhDts5wsSExyKcxTQyQ6VznrvlC42rl4Lty0wKn4yLfpMiz7ToLjozbtyrao9_xdiAK52QFAWK9u5Jvz6r903ywiCuA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2421111990</pqid></control><display><type>article</type><title>Nanoparticle Charge and Size Control Foliar Delivery Efficiency to Plant Cells and Organelles</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Hu, Peiguang ; An, Jing ; Faulkner, Maquela M ; Wu, Honghong ; Li, Zhaohu ; Tian, Xiaoli ; Giraldo, Juan Pablo</creator><creatorcontrib>Hu, Peiguang ; An, Jing ; Faulkner, Maquela M ; Wu, Honghong ; Li, Zhaohu ; Tian, Xiaoli ; Giraldo, Juan Pablo</creatorcontrib><description>Fundamental and quantitative understanding of the interactions between nanoparticles and plant leaves is crucial for advancing the field of nanoenabled agriculture. Herein, we systematically investigated and modeled how ζ potential (−52.3 mV to +36.6 mV) and hydrodynamic size (1.7–18 nm) of hydrophilic nanoparticles influence delivery efficiency and pathways to specific leaf cells and organelles. We studied interactions of nanoparticles of agricultural interest including carbon dots (CDs, 0.5 and 5 mg/mL), cerium oxide (CeO2, 0.5 mg/mL), and silica (SiO2, 0.5 mg/mL) nanoparticles with leaves of two major crop species having contrasting leaf anatomies: cotton (dicotyledon) and maize (monocotyledon). Biocompatible CDs allowed real-time tracking of nanoparticle translocation and distribution in planta by confocal fluorescence microscopy at high spatial (∼200 nm) and temporal (2–5 min) resolution. Nanoparticle formulations with surfactants (Silwet L-77) that reduced surface tension to 22 mN/m were found to be crucial for enabling rapid uptake (&lt;10 min) of nanoparticles through the leaf stomata and cuticle pathways. Nanoparticle–leaf interaction (NLI) empirical models based on hydrodynamic size and ζ potential indicate that hydrophilic nanoparticles with &lt;20 and 11 nm for cotton and maize, respectively, and positive charge (&gt;15 mV), exhibit the highest foliar delivery efficiencies into guard cells (100%), extracellular space (90.3%), and chloroplasts (55.8%). Systematic assessments of nanoparticle–plant interactions would lead to the development of NLI models that predict the translocation and distribution of nanomaterials in plants based on their chemical and physical properties.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/acsnano.9b09178</identifier><identifier>PMID: 32628442</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Cerium ; Chloroplasts ; Nanoparticles ; Plant Cells ; Plant Leaves ; Silicon Dioxide</subject><ispartof>ACS nano, 2020-07, Vol.14 (7), p.7970-7986</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a399t-435a38cf9c4bd7294fc89258f982ff39fd16cdab1f8949bdb366b232050fd32c3</citedby><cites>FETCH-LOGICAL-a399t-435a38cf9c4bd7294fc89258f982ff39fd16cdab1f8949bdb366b232050fd32c3</cites><orcidid>0000-0002-8400-8944 ; 0000-0002-9526-6295</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32628442$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hu, Peiguang</creatorcontrib><creatorcontrib>An, Jing</creatorcontrib><creatorcontrib>Faulkner, Maquela M</creatorcontrib><creatorcontrib>Wu, Honghong</creatorcontrib><creatorcontrib>Li, Zhaohu</creatorcontrib><creatorcontrib>Tian, Xiaoli</creatorcontrib><creatorcontrib>Giraldo, Juan Pablo</creatorcontrib><title>Nanoparticle Charge and Size Control Foliar Delivery Efficiency to Plant Cells and Organelles</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>Fundamental and quantitative understanding of the interactions between nanoparticles and plant leaves is crucial for advancing the field of nanoenabled agriculture. Herein, we systematically investigated and modeled how ζ potential (−52.3 mV to +36.6 mV) and hydrodynamic size (1.7–18 nm) of hydrophilic nanoparticles influence delivery efficiency and pathways to specific leaf cells and organelles. We studied interactions of nanoparticles of agricultural interest including carbon dots (CDs, 0.5 and 5 mg/mL), cerium oxide (CeO2, 0.5 mg/mL), and silica (SiO2, 0.5 mg/mL) nanoparticles with leaves of two major crop species having contrasting leaf anatomies: cotton (dicotyledon) and maize (monocotyledon). Biocompatible CDs allowed real-time tracking of nanoparticle translocation and distribution in planta by confocal fluorescence microscopy at high spatial (∼200 nm) and temporal (2–5 min) resolution. Nanoparticle formulations with surfactants (Silwet L-77) that reduced surface tension to 22 mN/m were found to be crucial for enabling rapid uptake (&lt;10 min) of nanoparticles through the leaf stomata and cuticle pathways. Nanoparticle–leaf interaction (NLI) empirical models based on hydrodynamic size and ζ potential indicate that hydrophilic nanoparticles with &lt;20 and 11 nm for cotton and maize, respectively, and positive charge (&gt;15 mV), exhibit the highest foliar delivery efficiencies into guard cells (100%), extracellular space (90.3%), and chloroplasts (55.8%). Systematic assessments of nanoparticle–plant interactions would lead to the development of NLI models that predict the translocation and distribution of nanomaterials in plants based on their chemical and physical properties.</description><subject>Cerium</subject><subject>Chloroplasts</subject><subject>Nanoparticles</subject><subject>Plant Cells</subject><subject>Plant Leaves</subject><subject>Silicon Dioxide</subject><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kM1LAzEQxYMotlbP3iRHQbbNx34kR1lbFYoVVPAiSzab1C3ppia7Qv3rjXbtzbnMDPzeY-YBcI7RGCOCJ0L6RjR2zEvEccYOwBBzmkaIpa-H-znBA3Di_QqhJGNZegwGlKSExTEZgreHIN8I19bSKJi_C7dUUDQVfKq_wm6b1lkDZ9bUwsEbZepP5bZwqnUta9XILWwtfDSiaWGujPG_0oVbiiZsyp-CIy2MV2d9H4GX2fQ5v4vmi9v7_HoeCcp5G8U0EZRJzWVcVhnhsZaMk4RpzojWlOsKp7ISJdaMx7ysSpqmJaEEJUhXlEg6Apc7342zH53ybbGuvQwnhDts5wsSExyKcxTQyQ6VznrvlC42rl4Lty0wKn4yLfpMiz7ToLjozbtyrao9_xdiAK52QFAWK9u5Jvz6r903ywiCuA</recordid><startdate>20200728</startdate><enddate>20200728</enddate><creator>Hu, Peiguang</creator><creator>An, Jing</creator><creator>Faulkner, Maquela M</creator><creator>Wu, Honghong</creator><creator>Li, Zhaohu</creator><creator>Tian, Xiaoli</creator><creator>Giraldo, Juan Pablo</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8400-8944</orcidid><orcidid>https://orcid.org/0000-0002-9526-6295</orcidid></search><sort><creationdate>20200728</creationdate><title>Nanoparticle Charge and Size Control Foliar Delivery Efficiency to Plant Cells and Organelles</title><author>Hu, Peiguang ; An, Jing ; Faulkner, Maquela M ; Wu, Honghong ; Li, Zhaohu ; Tian, Xiaoli ; Giraldo, Juan Pablo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a399t-435a38cf9c4bd7294fc89258f982ff39fd16cdab1f8949bdb366b232050fd32c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Cerium</topic><topic>Chloroplasts</topic><topic>Nanoparticles</topic><topic>Plant Cells</topic><topic>Plant Leaves</topic><topic>Silicon Dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hu, Peiguang</creatorcontrib><creatorcontrib>An, Jing</creatorcontrib><creatorcontrib>Faulkner, Maquela M</creatorcontrib><creatorcontrib>Wu, Honghong</creatorcontrib><creatorcontrib>Li, Zhaohu</creatorcontrib><creatorcontrib>Tian, Xiaoli</creatorcontrib><creatorcontrib>Giraldo, Juan Pablo</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hu, Peiguang</au><au>An, Jing</au><au>Faulkner, Maquela M</au><au>Wu, Honghong</au><au>Li, Zhaohu</au><au>Tian, Xiaoli</au><au>Giraldo, Juan Pablo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nanoparticle Charge and Size Control Foliar Delivery Efficiency to Plant Cells and Organelles</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2020-07-28</date><risdate>2020</risdate><volume>14</volume><issue>7</issue><spage>7970</spage><epage>7986</epage><pages>7970-7986</pages><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>Fundamental and quantitative understanding of the interactions between nanoparticles and plant leaves is crucial for advancing the field of nanoenabled agriculture. Herein, we systematically investigated and modeled how ζ potential (−52.3 mV to +36.6 mV) and hydrodynamic size (1.7–18 nm) of hydrophilic nanoparticles influence delivery efficiency and pathways to specific leaf cells and organelles. We studied interactions of nanoparticles of agricultural interest including carbon dots (CDs, 0.5 and 5 mg/mL), cerium oxide (CeO2, 0.5 mg/mL), and silica (SiO2, 0.5 mg/mL) nanoparticles with leaves of two major crop species having contrasting leaf anatomies: cotton (dicotyledon) and maize (monocotyledon). Biocompatible CDs allowed real-time tracking of nanoparticle translocation and distribution in planta by confocal fluorescence microscopy at high spatial (∼200 nm) and temporal (2–5 min) resolution. Nanoparticle formulations with surfactants (Silwet L-77) that reduced surface tension to 22 mN/m were found to be crucial for enabling rapid uptake (&lt;10 min) of nanoparticles through the leaf stomata and cuticle pathways. Nanoparticle–leaf interaction (NLI) empirical models based on hydrodynamic size and ζ potential indicate that hydrophilic nanoparticles with &lt;20 and 11 nm for cotton and maize, respectively, and positive charge (&gt;15 mV), exhibit the highest foliar delivery efficiencies into guard cells (100%), extracellular space (90.3%), and chloroplasts (55.8%). Systematic assessments of nanoparticle–plant interactions would lead to the development of NLI models that predict the translocation and distribution of nanomaterials in plants based on their chemical and physical properties.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>32628442</pmid><doi>10.1021/acsnano.9b09178</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-8400-8944</orcidid><orcidid>https://orcid.org/0000-0002-9526-6295</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1936-0851
ispartof ACS nano, 2020-07, Vol.14 (7), p.7970-7986
issn 1936-0851
1936-086X
language eng
recordid cdi_proquest_miscellaneous_2421111990
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects Cerium
Chloroplasts
Nanoparticles
Plant Cells
Plant Leaves
Silicon Dioxide
title Nanoparticle Charge and Size Control Foliar Delivery Efficiency to Plant Cells and Organelles
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T01%3A16%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nanoparticle%20Charge%20and%20Size%20Control%20Foliar%20Delivery%20Efficiency%20to%20Plant%20Cells%20and%20Organelles&rft.jtitle=ACS%20nano&rft.au=Hu,%20Peiguang&rft.date=2020-07-28&rft.volume=14&rft.issue=7&rft.spage=7970&rft.epage=7986&rft.pages=7970-7986&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/acsnano.9b09178&rft_dat=%3Cproquest_cross%3E2421111990%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a399t-435a38cf9c4bd7294fc89258f982ff39fd16cdab1f8949bdb366b232050fd32c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2421111990&rft_id=info:pmid/32628442&rfr_iscdi=true