Loading…
Electrochemical hydrogen and oxygen evolution reactions from a cobalt-porphyrin-based covalent organic polymer
[Display omitted] Covalent organic polymers have attracted much attention due to their high specific surface area, superlative porosity, and diversity in electronic structure. Herein, a novel porous cobalt-porphyrin-based covalent organic polymer (CoCOP) is fabricated through the Schiff-base condens...
Saved in:
Published in: | Journal of colloid and interface science 2020-11, Vol.579, p.598-606 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | [Display omitted]
Covalent organic polymers have attracted much attention due to their high specific surface area, superlative porosity, and diversity in electronic structure. Herein, a novel porous cobalt-porphyrin-based covalent organic polymer (CoCOP) is fabricated through the Schiff-base condensation reaction, which is used as a difunctional electrocatalyst for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). The CoCOP possesses a high surface area and strong synergistic effect between the cobalt-porphyrins and the CN groups, resulting in efficient HER and OER performances. The CoCOP required relatively low overpotentials for both HER (121 mV to reach 1.0 mA cm−2 and 310 mV to reach 10 mA cm−2) and OER (166 mV to reach 1.0 mA cm−2 and 350 mV to reach 10 mA cm−2) in alkaline media. This work may provide a new idea for the design of non-noble metal-based coordination polymers with excellent structure and high electrocatalytic performance. |
---|---|
ISSN: | 0021-9797 1095-7103 |
DOI: | 10.1016/j.jcis.2020.06.109 |