Loading…
Specific Isotope-Responsive Breathing Transition in Flexible Metal–Organic Frameworks
An isotope-selective responsive system based on molecular recognition in porous materials has potential for the storage and purification of isotopic mixtures but is considered unachievable because of the almost identical physicochemical properties of the isotopes. Herein, a unique isotope-responsive...
Saved in:
Published in: | Journal of the American Chemical Society 2020-08, Vol.142 (31), p.13278-13282 |
---|---|
Main Authors: | , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | An isotope-selective responsive system based on molecular recognition in porous materials has potential for the storage and purification of isotopic mixtures but is considered unachievable because of the almost identical physicochemical properties of the isotopes. Herein, a unique isotope-responsive breathing transition of the flexible metal–organic framework (MOF), MIL-53(Al), which can selectively recognize and respond to only D2 molecules through a secondary breathing transition, is reported. This novel phenomenon is examined using in situ neutron diffraction experiments under the same conditions for H2 and D2 sorption experiments. This work can guide the development of a novel isotope-selective recognition system and provide opportunities to fabricate flexible MOF systems for energy-efficient purification of the isotopic mixture. |
---|---|
ISSN: | 0002-7863 1520-5126 |
DOI: | 10.1021/jacs.0c04277 |