Loading…
Signal Peptides Generated by Attention-Based Neural Networks
Short (15–30 residue) chains of amino acids at the amino termini of expressed proteins known as signal peptides (SPs) specify secretion in living cells. We trained an attention-based neural network, the Transformer model, on data from all available organisms in Swiss-Prot to generate SP sequences. E...
Saved in:
Published in: | ACS synthetic biology 2020-08, Vol.9 (8), p.2154-2161 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a359t-e5710ff96a799a62c73c1731218ac6b5d2d155a5094147deff3a07c6e471a3ec3 |
---|---|
cites | cdi_FETCH-LOGICAL-a359t-e5710ff96a799a62c73c1731218ac6b5d2d155a5094147deff3a07c6e471a3ec3 |
container_end_page | 2161 |
container_issue | 8 |
container_start_page | 2154 |
container_title | ACS synthetic biology |
container_volume | 9 |
creator | Wu, Zachary Yang, Kevin K Liszka, Michael J Lee, Alycia Batzilla, Alina Wernick, David Weiner, David P Arnold, Frances H |
description | Short (15–30 residue) chains of amino acids at the amino termini of expressed proteins known as signal peptides (SPs) specify secretion in living cells. We trained an attention-based neural network, the Transformer model, on data from all available organisms in Swiss-Prot to generate SP sequences. Experimental testing demonstrates that the model-generated SPs are functional: when appended to enzymes expressed in an industrial Bacillus subtilis strain, the SPs lead to secreted activity that is competitive with industrially used SPs. Additionally, the model-generated SPs are diverse in sequence, sharing as little as 58% sequence identity to the closest known native signal peptide and 73% ± 9% on average. |
doi_str_mv | 10.1021/acssynbio.0c00219 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2423066286</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2423066286</sourcerecordid><originalsourceid>FETCH-LOGICAL-a359t-e5710ff96a799a62c73c1731218ac6b5d2d155a5094147deff3a07c6e471a3ec3</originalsourceid><addsrcrecordid>eNp9kMFKAzEQhoMoWGofwNsevWzNJJukC15q0SqUKqjnkGZnZet2U5Mssm9vpEU8OZcZ_vlmDh8hl0CnQBlcGxvC0G0aN6WWpqA8ISMGEnJBJT_9M5-TSQhbmkoILvhsRG5emvfOtNkz7mNTYciW2KE3EatsM2TzGLGLjevyWxNStMbeJ3iN8cv5j3BBzmrTBpwc-5i83d-9Lh7y1dPycTFf5YaLMuYoFNC6LqVRZWkks4pbUBwYzIyVG1GxCoQwgpYFFKrCuuaGKiuxUGA4Wj4mV4e_e-8-ewxR75pgsW1Nh64PmhWMUynZTCYUDqj1LgSPtd77Zmf8oIHqH1n6V5Y-yko3-eEmrfTW9T4JCf_w31ESbb4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2423066286</pqid></control><display><type>article</type><title>Signal Peptides Generated by Attention-Based Neural Networks</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Wu, Zachary ; Yang, Kevin K ; Liszka, Michael J ; Lee, Alycia ; Batzilla, Alina ; Wernick, David ; Weiner, David P ; Arnold, Frances H</creator><creatorcontrib>Wu, Zachary ; Yang, Kevin K ; Liszka, Michael J ; Lee, Alycia ; Batzilla, Alina ; Wernick, David ; Weiner, David P ; Arnold, Frances H</creatorcontrib><description>Short (15–30 residue) chains of amino acids at the amino termini of expressed proteins known as signal peptides (SPs) specify secretion in living cells. We trained an attention-based neural network, the Transformer model, on data from all available organisms in Swiss-Prot to generate SP sequences. Experimental testing demonstrates that the model-generated SPs are functional: when appended to enzymes expressed in an industrial Bacillus subtilis strain, the SPs lead to secreted activity that is competitive with industrially used SPs. Additionally, the model-generated SPs are diverse in sequence, sharing as little as 58% sequence identity to the closest known native signal peptide and 73% ± 9% on average.</description><identifier>ISSN: 2161-5063</identifier><identifier>EISSN: 2161-5063</identifier><identifier>DOI: 10.1021/acssynbio.0c00219</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>ACS synthetic biology, 2020-08, Vol.9 (8), p.2154-2161</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a359t-e5710ff96a799a62c73c1731218ac6b5d2d155a5094147deff3a07c6e471a3ec3</citedby><cites>FETCH-LOGICAL-a359t-e5710ff96a799a62c73c1731218ac6b5d2d155a5094147deff3a07c6e471a3ec3</cites><orcidid>0000-0002-4027-364X ; 0000-0003-2429-9812</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Wu, Zachary</creatorcontrib><creatorcontrib>Yang, Kevin K</creatorcontrib><creatorcontrib>Liszka, Michael J</creatorcontrib><creatorcontrib>Lee, Alycia</creatorcontrib><creatorcontrib>Batzilla, Alina</creatorcontrib><creatorcontrib>Wernick, David</creatorcontrib><creatorcontrib>Weiner, David P</creatorcontrib><creatorcontrib>Arnold, Frances H</creatorcontrib><title>Signal Peptides Generated by Attention-Based Neural Networks</title><title>ACS synthetic biology</title><addtitle>ACS Synth. Biol</addtitle><description>Short (15–30 residue) chains of amino acids at the amino termini of expressed proteins known as signal peptides (SPs) specify secretion in living cells. We trained an attention-based neural network, the Transformer model, on data from all available organisms in Swiss-Prot to generate SP sequences. Experimental testing demonstrates that the model-generated SPs are functional: when appended to enzymes expressed in an industrial Bacillus subtilis strain, the SPs lead to secreted activity that is competitive with industrially used SPs. Additionally, the model-generated SPs are diverse in sequence, sharing as little as 58% sequence identity to the closest known native signal peptide and 73% ± 9% on average.</description><issn>2161-5063</issn><issn>2161-5063</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kMFKAzEQhoMoWGofwNsevWzNJJukC15q0SqUKqjnkGZnZet2U5Mssm9vpEU8OZcZ_vlmDh8hl0CnQBlcGxvC0G0aN6WWpqA8ISMGEnJBJT_9M5-TSQhbmkoILvhsRG5emvfOtNkz7mNTYciW2KE3EatsM2TzGLGLjevyWxNStMbeJ3iN8cv5j3BBzmrTBpwc-5i83d-9Lh7y1dPycTFf5YaLMuYoFNC6LqVRZWkks4pbUBwYzIyVG1GxCoQwgpYFFKrCuuaGKiuxUGA4Wj4mV4e_e-8-ewxR75pgsW1Nh64PmhWMUynZTCYUDqj1LgSPtd77Zmf8oIHqH1n6V5Y-yko3-eEmrfTW9T4JCf_w31ESbb4</recordid><startdate>20200821</startdate><enddate>20200821</enddate><creator>Wu, Zachary</creator><creator>Yang, Kevin K</creator><creator>Liszka, Michael J</creator><creator>Lee, Alycia</creator><creator>Batzilla, Alina</creator><creator>Wernick, David</creator><creator>Weiner, David P</creator><creator>Arnold, Frances H</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4027-364X</orcidid><orcidid>https://orcid.org/0000-0003-2429-9812</orcidid></search><sort><creationdate>20200821</creationdate><title>Signal Peptides Generated by Attention-Based Neural Networks</title><author>Wu, Zachary ; Yang, Kevin K ; Liszka, Michael J ; Lee, Alycia ; Batzilla, Alina ; Wernick, David ; Weiner, David P ; Arnold, Frances H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a359t-e5710ff96a799a62c73c1731218ac6b5d2d155a5094147deff3a07c6e471a3ec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Zachary</creatorcontrib><creatorcontrib>Yang, Kevin K</creatorcontrib><creatorcontrib>Liszka, Michael J</creatorcontrib><creatorcontrib>Lee, Alycia</creatorcontrib><creatorcontrib>Batzilla, Alina</creatorcontrib><creatorcontrib>Wernick, David</creatorcontrib><creatorcontrib>Weiner, David P</creatorcontrib><creatorcontrib>Arnold, Frances H</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS synthetic biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Zachary</au><au>Yang, Kevin K</au><au>Liszka, Michael J</au><au>Lee, Alycia</au><au>Batzilla, Alina</au><au>Wernick, David</au><au>Weiner, David P</au><au>Arnold, Frances H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Signal Peptides Generated by Attention-Based Neural Networks</atitle><jtitle>ACS synthetic biology</jtitle><addtitle>ACS Synth. Biol</addtitle><date>2020-08-21</date><risdate>2020</risdate><volume>9</volume><issue>8</issue><spage>2154</spage><epage>2161</epage><pages>2154-2161</pages><issn>2161-5063</issn><eissn>2161-5063</eissn><abstract>Short (15–30 residue) chains of amino acids at the amino termini of expressed proteins known as signal peptides (SPs) specify secretion in living cells. We trained an attention-based neural network, the Transformer model, on data from all available organisms in Swiss-Prot to generate SP sequences. Experimental testing demonstrates that the model-generated SPs are functional: when appended to enzymes expressed in an industrial Bacillus subtilis strain, the SPs lead to secreted activity that is competitive with industrially used SPs. Additionally, the model-generated SPs are diverse in sequence, sharing as little as 58% sequence identity to the closest known native signal peptide and 73% ± 9% on average.</abstract><pub>American Chemical Society</pub><doi>10.1021/acssynbio.0c00219</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-4027-364X</orcidid><orcidid>https://orcid.org/0000-0003-2429-9812</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2161-5063 |
ispartof | ACS synthetic biology, 2020-08, Vol.9 (8), p.2154-2161 |
issn | 2161-5063 2161-5063 |
language | eng |
recordid | cdi_proquest_miscellaneous_2423066286 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
title | Signal Peptides Generated by Attention-Based Neural Networks |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T05%3A17%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Signal%20Peptides%20Generated%20by%20Attention-Based%20Neural%20Networks&rft.jtitle=ACS%20synthetic%20biology&rft.au=Wu,%20Zachary&rft.date=2020-08-21&rft.volume=9&rft.issue=8&rft.spage=2154&rft.epage=2161&rft.pages=2154-2161&rft.issn=2161-5063&rft.eissn=2161-5063&rft_id=info:doi/10.1021/acssynbio.0c00219&rft_dat=%3Cproquest_cross%3E2423066286%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a359t-e5710ff96a799a62c73c1731218ac6b5d2d155a5094147deff3a07c6e471a3ec3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2423066286&rft_id=info:pmid/&rfr_iscdi=true |