Loading…

Statistical inference for decision curve analysis, with applications to cataract diagnosis

Statistical learning methods are widely used in medical literature for the purpose of diagnosis or prediction. Conventional accuracy assessment via sensitivity, specificity, and ROC curves does not fully account for clinical utility of a specific model. Decision curve analysis (DCA) becomes a novel...

Full description

Saved in:
Bibliographic Details
Published in:Statistics in medicine 2020-09, Vol.39 (22), p.2980-3002
Main Authors: Sande, Sumaiya Z., Li, Jialiang, D'Agostino, Ralph, Yin Wong, Tien, Cheng, Ching‐Yu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3498-e0b1ee28e1bc0bce25aec0554f7dde2575b0e5143d08a0710ed5450ad8deff6c3
cites cdi_FETCH-LOGICAL-c3498-e0b1ee28e1bc0bce25aec0554f7dde2575b0e5143d08a0710ed5450ad8deff6c3
container_end_page 3002
container_issue 22
container_start_page 2980
container_title Statistics in medicine
container_volume 39
creator Sande, Sumaiya Z.
Li, Jialiang
D'Agostino, Ralph
Yin Wong, Tien
Cheng, Ching‐Yu
description Statistical learning methods are widely used in medical literature for the purpose of diagnosis or prediction. Conventional accuracy assessment via sensitivity, specificity, and ROC curves does not fully account for clinical utility of a specific model. Decision curve analysis (DCA) becomes a novel complement as it incorporates a clinical judgment of the relative value of benefits (treating a true positive case) and harms (treating a false positive case) associated with prediction models. The preference of a patient or a policy‐maker is formulated statistically as the underlying threshold probability, above which the patient would choose to be treated. Net benefit is then calculated for possible threshold probability, which places benefits and harms on the same scale. We consider the inference problems for DCA in this paper. Interval estimation procedure and inference methodology are provided after we derive the relevant asymptotic properties. Our formulation can accommodate the classification problems with multiple categories. We carry out numerical studies to assess the performance of the proposed methods. An eye disease dataset is analyzed to illustrate our proposals.
doi_str_mv 10.1002/sim.8588
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2424096959</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2424096959</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3498-e0b1ee28e1bc0bce25aec0554f7dde2575b0e5143d08a0710ed5450ad8deff6c3</originalsourceid><addsrcrecordid>eNp1kE1LxDAQQIMoun6Av0ACXjzYdZI2TXqUxS9Y8aBevJQ0mWqWbrsmrbL_3qyuCoKnTODNg3mEHDIYMwB-Ftx8rIRSG2TEoJAJcKE2yQi4lEkumdghuyHMABgTXG6TnZTnuYQiHZGn-173LvTO6Ia6tkaPrUFad55aNC64rqVm8G9IdaubZXDhlL67_oXqxaKJS30EAu07Gkfttempdfq57SK4T7Zq3QQ8WL975PHy4mFynUzvrm4m59PEpFmhEoSKIXKFrDJQGeRCowEhslpaG39SVICCZakFpUEyQCsyAdoqi3Wdm3SPnHx5F757HTD05dwFg02jW-yGUPKMZ1DkhSgievwHnXWDj4etqIylKgVQv0LjuxA81uXCu7n2y5JBuepdxt7lqndEj9bCoZqj_QG_A0cg-QLeXYPLf0Xl_c3tp_ADDL2Kng</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2441383008</pqid></control><display><type>article</type><title>Statistical inference for decision curve analysis, with applications to cataract diagnosis</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Sande, Sumaiya Z. ; Li, Jialiang ; D'Agostino, Ralph ; Yin Wong, Tien ; Cheng, Ching‐Yu</creator><creatorcontrib>Sande, Sumaiya Z. ; Li, Jialiang ; D'Agostino, Ralph ; Yin Wong, Tien ; Cheng, Ching‐Yu</creatorcontrib><description>Statistical learning methods are widely used in medical literature for the purpose of diagnosis or prediction. Conventional accuracy assessment via sensitivity, specificity, and ROC curves does not fully account for clinical utility of a specific model. Decision curve analysis (DCA) becomes a novel complement as it incorporates a clinical judgment of the relative value of benefits (treating a true positive case) and harms (treating a false positive case) associated with prediction models. The preference of a patient or a policy‐maker is formulated statistically as the underlying threshold probability, above which the patient would choose to be treated. Net benefit is then calculated for possible threshold probability, which places benefits and harms on the same scale. We consider the inference problems for DCA in this paper. Interval estimation procedure and inference methodology are provided after we derive the relevant asymptotic properties. Our formulation can accommodate the classification problems with multiple categories. We carry out numerical studies to assess the performance of the proposed methods. An eye disease dataset is analyzed to illustrate our proposals.</description><identifier>ISSN: 0277-6715</identifier><identifier>EISSN: 1097-0258</identifier><identifier>DOI: 10.1002/sim.8588</identifier><identifier>PMID: 32667093</identifier><language>eng</language><publisher>England: Wiley Subscription Services, Inc</publisher><subject>Cataracts ; Decision analysis ; decision curve ; diagnostic medicine ; Medical diagnosis ; risk prediction ; Statistical inference ; threshold ; utility</subject><ispartof>Statistics in medicine, 2020-09, Vol.39 (22), p.2980-3002</ispartof><rights>2020 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3498-e0b1ee28e1bc0bce25aec0554f7dde2575b0e5143d08a0710ed5450ad8deff6c3</citedby><cites>FETCH-LOGICAL-c3498-e0b1ee28e1bc0bce25aec0554f7dde2575b0e5143d08a0710ed5450ad8deff6c3</cites><orcidid>0000-0002-9704-4135</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32667093$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sande, Sumaiya Z.</creatorcontrib><creatorcontrib>Li, Jialiang</creatorcontrib><creatorcontrib>D'Agostino, Ralph</creatorcontrib><creatorcontrib>Yin Wong, Tien</creatorcontrib><creatorcontrib>Cheng, Ching‐Yu</creatorcontrib><title>Statistical inference for decision curve analysis, with applications to cataract diagnosis</title><title>Statistics in medicine</title><addtitle>Stat Med</addtitle><description>Statistical learning methods are widely used in medical literature for the purpose of diagnosis or prediction. Conventional accuracy assessment via sensitivity, specificity, and ROC curves does not fully account for clinical utility of a specific model. Decision curve analysis (DCA) becomes a novel complement as it incorporates a clinical judgment of the relative value of benefits (treating a true positive case) and harms (treating a false positive case) associated with prediction models. The preference of a patient or a policy‐maker is formulated statistically as the underlying threshold probability, above which the patient would choose to be treated. Net benefit is then calculated for possible threshold probability, which places benefits and harms on the same scale. We consider the inference problems for DCA in this paper. Interval estimation procedure and inference methodology are provided after we derive the relevant asymptotic properties. Our formulation can accommodate the classification problems with multiple categories. We carry out numerical studies to assess the performance of the proposed methods. An eye disease dataset is analyzed to illustrate our proposals.</description><subject>Cataracts</subject><subject>Decision analysis</subject><subject>decision curve</subject><subject>diagnostic medicine</subject><subject>Medical diagnosis</subject><subject>risk prediction</subject><subject>Statistical inference</subject><subject>threshold</subject><subject>utility</subject><issn>0277-6715</issn><issn>1097-0258</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LxDAQQIMoun6Av0ACXjzYdZI2TXqUxS9Y8aBevJQ0mWqWbrsmrbL_3qyuCoKnTODNg3mEHDIYMwB-Ftx8rIRSG2TEoJAJcKE2yQi4lEkumdghuyHMABgTXG6TnZTnuYQiHZGn-173LvTO6Ia6tkaPrUFad55aNC64rqVm8G9IdaubZXDhlL67_oXqxaKJS30EAu07Gkfttempdfq57SK4T7Zq3QQ8WL975PHy4mFynUzvrm4m59PEpFmhEoSKIXKFrDJQGeRCowEhslpaG39SVICCZakFpUEyQCsyAdoqi3Wdm3SPnHx5F757HTD05dwFg02jW-yGUPKMZ1DkhSgievwHnXWDj4etqIylKgVQv0LjuxA81uXCu7n2y5JBuepdxt7lqndEj9bCoZqj_QG_A0cg-QLeXYPLf0Xl_c3tp_ADDL2Kng</recordid><startdate>20200930</startdate><enddate>20200930</enddate><creator>Sande, Sumaiya Z.</creator><creator>Li, Jialiang</creator><creator>D'Agostino, Ralph</creator><creator>Yin Wong, Tien</creator><creator>Cheng, Ching‐Yu</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9704-4135</orcidid></search><sort><creationdate>20200930</creationdate><title>Statistical inference for decision curve analysis, with applications to cataract diagnosis</title><author>Sande, Sumaiya Z. ; Li, Jialiang ; D'Agostino, Ralph ; Yin Wong, Tien ; Cheng, Ching‐Yu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3498-e0b1ee28e1bc0bce25aec0554f7dde2575b0e5143d08a0710ed5450ad8deff6c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Cataracts</topic><topic>Decision analysis</topic><topic>decision curve</topic><topic>diagnostic medicine</topic><topic>Medical diagnosis</topic><topic>risk prediction</topic><topic>Statistical inference</topic><topic>threshold</topic><topic>utility</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sande, Sumaiya Z.</creatorcontrib><creatorcontrib>Li, Jialiang</creatorcontrib><creatorcontrib>D'Agostino, Ralph</creatorcontrib><creatorcontrib>Yin Wong, Tien</creatorcontrib><creatorcontrib>Cheng, Ching‐Yu</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Statistics in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sande, Sumaiya Z.</au><au>Li, Jialiang</au><au>D'Agostino, Ralph</au><au>Yin Wong, Tien</au><au>Cheng, Ching‐Yu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Statistical inference for decision curve analysis, with applications to cataract diagnosis</atitle><jtitle>Statistics in medicine</jtitle><addtitle>Stat Med</addtitle><date>2020-09-30</date><risdate>2020</risdate><volume>39</volume><issue>22</issue><spage>2980</spage><epage>3002</epage><pages>2980-3002</pages><issn>0277-6715</issn><eissn>1097-0258</eissn><abstract>Statistical learning methods are widely used in medical literature for the purpose of diagnosis or prediction. Conventional accuracy assessment via sensitivity, specificity, and ROC curves does not fully account for clinical utility of a specific model. Decision curve analysis (DCA) becomes a novel complement as it incorporates a clinical judgment of the relative value of benefits (treating a true positive case) and harms (treating a false positive case) associated with prediction models. The preference of a patient or a policy‐maker is formulated statistically as the underlying threshold probability, above which the patient would choose to be treated. Net benefit is then calculated for possible threshold probability, which places benefits and harms on the same scale. We consider the inference problems for DCA in this paper. Interval estimation procedure and inference methodology are provided after we derive the relevant asymptotic properties. Our formulation can accommodate the classification problems with multiple categories. We carry out numerical studies to assess the performance of the proposed methods. An eye disease dataset is analyzed to illustrate our proposals.</abstract><cop>England</cop><pub>Wiley Subscription Services, Inc</pub><pmid>32667093</pmid><doi>10.1002/sim.8588</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0002-9704-4135</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0277-6715
ispartof Statistics in medicine, 2020-09, Vol.39 (22), p.2980-3002
issn 0277-6715
1097-0258
language eng
recordid cdi_proquest_miscellaneous_2424096959
source Wiley-Blackwell Read & Publish Collection
subjects Cataracts
Decision analysis
decision curve
diagnostic medicine
Medical diagnosis
risk prediction
Statistical inference
threshold
utility
title Statistical inference for decision curve analysis, with applications to cataract diagnosis
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T08%3A31%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Statistical%20inference%20for%20decision%20curve%20analysis,%20with%20applications%20to%20cataract%20diagnosis&rft.jtitle=Statistics%20in%20medicine&rft.au=Sande,%20Sumaiya%20Z.&rft.date=2020-09-30&rft.volume=39&rft.issue=22&rft.spage=2980&rft.epage=3002&rft.pages=2980-3002&rft.issn=0277-6715&rft.eissn=1097-0258&rft_id=info:doi/10.1002/sim.8588&rft_dat=%3Cproquest_cross%3E2424096959%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3498-e0b1ee28e1bc0bce25aec0554f7dde2575b0e5143d08a0710ed5450ad8deff6c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2441383008&rft_id=info:pmid/32667093&rfr_iscdi=true