Loading…
Statistical inference for decision curve analysis, with applications to cataract diagnosis
Statistical learning methods are widely used in medical literature for the purpose of diagnosis or prediction. Conventional accuracy assessment via sensitivity, specificity, and ROC curves does not fully account for clinical utility of a specific model. Decision curve analysis (DCA) becomes a novel...
Saved in:
Published in: | Statistics in medicine 2020-09, Vol.39 (22), p.2980-3002 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3498-e0b1ee28e1bc0bce25aec0554f7dde2575b0e5143d08a0710ed5450ad8deff6c3 |
---|---|
cites | cdi_FETCH-LOGICAL-c3498-e0b1ee28e1bc0bce25aec0554f7dde2575b0e5143d08a0710ed5450ad8deff6c3 |
container_end_page | 3002 |
container_issue | 22 |
container_start_page | 2980 |
container_title | Statistics in medicine |
container_volume | 39 |
creator | Sande, Sumaiya Z. Li, Jialiang D'Agostino, Ralph Yin Wong, Tien Cheng, Ching‐Yu |
description | Statistical learning methods are widely used in medical literature for the purpose of diagnosis or prediction. Conventional accuracy assessment via sensitivity, specificity, and ROC curves does not fully account for clinical utility of a specific model. Decision curve analysis (DCA) becomes a novel complement as it incorporates a clinical judgment of the relative value of benefits (treating a true positive case) and harms (treating a false positive case) associated with prediction models. The preference of a patient or a policy‐maker is formulated statistically as the underlying threshold probability, above which the patient would choose to be treated. Net benefit is then calculated for possible threshold probability, which places benefits and harms on the same scale. We consider the inference problems for DCA in this paper. Interval estimation procedure and inference methodology are provided after we derive the relevant asymptotic properties. Our formulation can accommodate the classification problems with multiple categories. We carry out numerical studies to assess the performance of the proposed methods. An eye disease dataset is analyzed to illustrate our proposals. |
doi_str_mv | 10.1002/sim.8588 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2424096959</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2424096959</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3498-e0b1ee28e1bc0bce25aec0554f7dde2575b0e5143d08a0710ed5450ad8deff6c3</originalsourceid><addsrcrecordid>eNp1kE1LxDAQQIMoun6Av0ACXjzYdZI2TXqUxS9Y8aBevJQ0mWqWbrsmrbL_3qyuCoKnTODNg3mEHDIYMwB-Ftx8rIRSG2TEoJAJcKE2yQi4lEkumdghuyHMABgTXG6TnZTnuYQiHZGn-173LvTO6Ia6tkaPrUFad55aNC64rqVm8G9IdaubZXDhlL67_oXqxaKJS30EAu07Gkfttempdfq57SK4T7Zq3QQ8WL975PHy4mFynUzvrm4m59PEpFmhEoSKIXKFrDJQGeRCowEhslpaG39SVICCZakFpUEyQCsyAdoqi3Wdm3SPnHx5F757HTD05dwFg02jW-yGUPKMZ1DkhSgievwHnXWDj4etqIylKgVQv0LjuxA81uXCu7n2y5JBuepdxt7lqndEj9bCoZqj_QG_A0cg-QLeXYPLf0Xl_c3tp_ADDL2Kng</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2441383008</pqid></control><display><type>article</type><title>Statistical inference for decision curve analysis, with applications to cataract diagnosis</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Sande, Sumaiya Z. ; Li, Jialiang ; D'Agostino, Ralph ; Yin Wong, Tien ; Cheng, Ching‐Yu</creator><creatorcontrib>Sande, Sumaiya Z. ; Li, Jialiang ; D'Agostino, Ralph ; Yin Wong, Tien ; Cheng, Ching‐Yu</creatorcontrib><description>Statistical learning methods are widely used in medical literature for the purpose of diagnosis or prediction. Conventional accuracy assessment via sensitivity, specificity, and ROC curves does not fully account for clinical utility of a specific model. Decision curve analysis (DCA) becomes a novel complement as it incorporates a clinical judgment of the relative value of benefits (treating a true positive case) and harms (treating a false positive case) associated with prediction models. The preference of a patient or a policy‐maker is formulated statistically as the underlying threshold probability, above which the patient would choose to be treated. Net benefit is then calculated for possible threshold probability, which places benefits and harms on the same scale. We consider the inference problems for DCA in this paper. Interval estimation procedure and inference methodology are provided after we derive the relevant asymptotic properties. Our formulation can accommodate the classification problems with multiple categories. We carry out numerical studies to assess the performance of the proposed methods. An eye disease dataset is analyzed to illustrate our proposals.</description><identifier>ISSN: 0277-6715</identifier><identifier>EISSN: 1097-0258</identifier><identifier>DOI: 10.1002/sim.8588</identifier><identifier>PMID: 32667093</identifier><language>eng</language><publisher>England: Wiley Subscription Services, Inc</publisher><subject>Cataracts ; Decision analysis ; decision curve ; diagnostic medicine ; Medical diagnosis ; risk prediction ; Statistical inference ; threshold ; utility</subject><ispartof>Statistics in medicine, 2020-09, Vol.39 (22), p.2980-3002</ispartof><rights>2020 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3498-e0b1ee28e1bc0bce25aec0554f7dde2575b0e5143d08a0710ed5450ad8deff6c3</citedby><cites>FETCH-LOGICAL-c3498-e0b1ee28e1bc0bce25aec0554f7dde2575b0e5143d08a0710ed5450ad8deff6c3</cites><orcidid>0000-0002-9704-4135</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32667093$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sande, Sumaiya Z.</creatorcontrib><creatorcontrib>Li, Jialiang</creatorcontrib><creatorcontrib>D'Agostino, Ralph</creatorcontrib><creatorcontrib>Yin Wong, Tien</creatorcontrib><creatorcontrib>Cheng, Ching‐Yu</creatorcontrib><title>Statistical inference for decision curve analysis, with applications to cataract diagnosis</title><title>Statistics in medicine</title><addtitle>Stat Med</addtitle><description>Statistical learning methods are widely used in medical literature for the purpose of diagnosis or prediction. Conventional accuracy assessment via sensitivity, specificity, and ROC curves does not fully account for clinical utility of a specific model. Decision curve analysis (DCA) becomes a novel complement as it incorporates a clinical judgment of the relative value of benefits (treating a true positive case) and harms (treating a false positive case) associated with prediction models. The preference of a patient or a policy‐maker is formulated statistically as the underlying threshold probability, above which the patient would choose to be treated. Net benefit is then calculated for possible threshold probability, which places benefits and harms on the same scale. We consider the inference problems for DCA in this paper. Interval estimation procedure and inference methodology are provided after we derive the relevant asymptotic properties. Our formulation can accommodate the classification problems with multiple categories. We carry out numerical studies to assess the performance of the proposed methods. An eye disease dataset is analyzed to illustrate our proposals.</description><subject>Cataracts</subject><subject>Decision analysis</subject><subject>decision curve</subject><subject>diagnostic medicine</subject><subject>Medical diagnosis</subject><subject>risk prediction</subject><subject>Statistical inference</subject><subject>threshold</subject><subject>utility</subject><issn>0277-6715</issn><issn>1097-0258</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LxDAQQIMoun6Av0ACXjzYdZI2TXqUxS9Y8aBevJQ0mWqWbrsmrbL_3qyuCoKnTODNg3mEHDIYMwB-Ftx8rIRSG2TEoJAJcKE2yQi4lEkumdghuyHMABgTXG6TnZTnuYQiHZGn-173LvTO6Ia6tkaPrUFad55aNC64rqVm8G9IdaubZXDhlL67_oXqxaKJS30EAu07Gkfttempdfq57SK4T7Zq3QQ8WL975PHy4mFynUzvrm4m59PEpFmhEoSKIXKFrDJQGeRCowEhslpaG39SVICCZakFpUEyQCsyAdoqi3Wdm3SPnHx5F757HTD05dwFg02jW-yGUPKMZ1DkhSgievwHnXWDj4etqIylKgVQv0LjuxA81uXCu7n2y5JBuepdxt7lqndEj9bCoZqj_QG_A0cg-QLeXYPLf0Xl_c3tp_ADDL2Kng</recordid><startdate>20200930</startdate><enddate>20200930</enddate><creator>Sande, Sumaiya Z.</creator><creator>Li, Jialiang</creator><creator>D'Agostino, Ralph</creator><creator>Yin Wong, Tien</creator><creator>Cheng, Ching‐Yu</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9704-4135</orcidid></search><sort><creationdate>20200930</creationdate><title>Statistical inference for decision curve analysis, with applications to cataract diagnosis</title><author>Sande, Sumaiya Z. ; Li, Jialiang ; D'Agostino, Ralph ; Yin Wong, Tien ; Cheng, Ching‐Yu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3498-e0b1ee28e1bc0bce25aec0554f7dde2575b0e5143d08a0710ed5450ad8deff6c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Cataracts</topic><topic>Decision analysis</topic><topic>decision curve</topic><topic>diagnostic medicine</topic><topic>Medical diagnosis</topic><topic>risk prediction</topic><topic>Statistical inference</topic><topic>threshold</topic><topic>utility</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sande, Sumaiya Z.</creatorcontrib><creatorcontrib>Li, Jialiang</creatorcontrib><creatorcontrib>D'Agostino, Ralph</creatorcontrib><creatorcontrib>Yin Wong, Tien</creatorcontrib><creatorcontrib>Cheng, Ching‐Yu</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Statistics in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sande, Sumaiya Z.</au><au>Li, Jialiang</au><au>D'Agostino, Ralph</au><au>Yin Wong, Tien</au><au>Cheng, Ching‐Yu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Statistical inference for decision curve analysis, with applications to cataract diagnosis</atitle><jtitle>Statistics in medicine</jtitle><addtitle>Stat Med</addtitle><date>2020-09-30</date><risdate>2020</risdate><volume>39</volume><issue>22</issue><spage>2980</spage><epage>3002</epage><pages>2980-3002</pages><issn>0277-6715</issn><eissn>1097-0258</eissn><abstract>Statistical learning methods are widely used in medical literature for the purpose of diagnosis or prediction. Conventional accuracy assessment via sensitivity, specificity, and ROC curves does not fully account for clinical utility of a specific model. Decision curve analysis (DCA) becomes a novel complement as it incorporates a clinical judgment of the relative value of benefits (treating a true positive case) and harms (treating a false positive case) associated with prediction models. The preference of a patient or a policy‐maker is formulated statistically as the underlying threshold probability, above which the patient would choose to be treated. Net benefit is then calculated for possible threshold probability, which places benefits and harms on the same scale. We consider the inference problems for DCA in this paper. Interval estimation procedure and inference methodology are provided after we derive the relevant asymptotic properties. Our formulation can accommodate the classification problems with multiple categories. We carry out numerical studies to assess the performance of the proposed methods. An eye disease dataset is analyzed to illustrate our proposals.</abstract><cop>England</cop><pub>Wiley Subscription Services, Inc</pub><pmid>32667093</pmid><doi>10.1002/sim.8588</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0002-9704-4135</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0277-6715 |
ispartof | Statistics in medicine, 2020-09, Vol.39 (22), p.2980-3002 |
issn | 0277-6715 1097-0258 |
language | eng |
recordid | cdi_proquest_miscellaneous_2424096959 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Cataracts Decision analysis decision curve diagnostic medicine Medical diagnosis risk prediction Statistical inference threshold utility |
title | Statistical inference for decision curve analysis, with applications to cataract diagnosis |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T08%3A31%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Statistical%20inference%20for%20decision%20curve%20analysis,%20with%20applications%20to%20cataract%20diagnosis&rft.jtitle=Statistics%20in%20medicine&rft.au=Sande,%20Sumaiya%20Z.&rft.date=2020-09-30&rft.volume=39&rft.issue=22&rft.spage=2980&rft.epage=3002&rft.pages=2980-3002&rft.issn=0277-6715&rft.eissn=1097-0258&rft_id=info:doi/10.1002/sim.8588&rft_dat=%3Cproquest_cross%3E2424096959%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3498-e0b1ee28e1bc0bce25aec0554f7dde2575b0e5143d08a0710ed5450ad8deff6c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2441383008&rft_id=info:pmid/32667093&rfr_iscdi=true |