Loading…
Exact superregular breather solutions to the generalized nonlinear Schrödinger equation with nonhomogeneous coefficients and dissipative effects
Superregular breathers are peculiar solutions to the integrable nonlinear Schrödinger equation that constitute the building blocks for analysis of the nonlinear stage of modulation instability developing from a localized perturbation on the nonvanishing condensate background. Here superregular breat...
Saved in:
Published in: | Optics letters 2020-07, Vol.45 (14), p.3913-3916 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c290t-67be05362ef5d344c19eab1fd80481d55203161260298844fe2cc1a224caa3983 |
---|---|
cites | cdi_FETCH-LOGICAL-c290t-67be05362ef5d344c19eab1fd80481d55203161260298844fe2cc1a224caa3983 |
container_end_page | 3916 |
container_issue | 14 |
container_start_page | 3913 |
container_title | Optics letters |
container_volume | 45 |
creator | Perego, Auro M. |
description | Superregular breathers are peculiar solutions to the integrable nonlinear Schrödinger equation that constitute the building blocks for analysis of the nonlinear stage of modulation instability developing from a localized perturbation on the nonvanishing condensate background. Here superregular breather solutions are extended to the generalized nonlinear Schrödinger equation with nonhomogeneous coefficients and in the presence of dissipation. Concrete examples are shown that may allow observation of new solutions in fiber optics where dissipation is unavoidable, nonhomogeneous spatial distribution of the amplification profile can be controlled, and current technology allows design of the longitudinal dispersion profile. |
doi_str_mv | 10.1364/OL.395933 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2424098904</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2440104650</sourcerecordid><originalsourceid>FETCH-LOGICAL-c290t-67be05362ef5d344c19eab1fd80481d55203161260298844fe2cc1a224caa3983</originalsourceid><addsrcrecordid>eNpdkUtOwzAQhi0EEqWw4AaW2MAixa-k8RJV5SFV6gJYR64zaV2ldms7vG7BZbgAF8OhrFiNNP_3jUb6ETqnZER5Ia7nsxGXueT8AA1ozmUmxlIcogGhoshSwI7RSQhrQkgx5nyAPqdvSkccui14D8uuVR4vPKi4Ao-Da7tonA04Opw2eAkWvGrNB9TYOtsaC4l_1Cv__VUbu0wO7DrVO_jVxFUPrdzG9Z7rAtYOmsZoAzYGrGyNaxOC2SbhBXCKQMdwio4a1QY4-5tD9Hw7fZrcZ7P53cPkZpZpJknMivECSM4LBk1ecyE0laAWtKlLIkpa5zkjnBaUFYTJshSiAaY1VYwJrRSXJR-iy_3drXe7DkKsNiZoaFv1-2vFBBNElpKIhF78Q9eu8zZ9lyhBKBFFThJ1tae0dyF4aKqtNxvl3ytKqr6caj6r9uXwH1uqhTg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2440104650</pqid></control><display><type>article</type><title>Exact superregular breather solutions to the generalized nonlinear Schrödinger equation with nonhomogeneous coefficients and dissipative effects</title><source>Optica Publishing Group Journals</source><creator>Perego, Auro M.</creator><creatorcontrib>Perego, Auro M.</creatorcontrib><description>Superregular breathers are peculiar solutions to the integrable nonlinear Schrödinger equation that constitute the building blocks for analysis of the nonlinear stage of modulation instability developing from a localized perturbation on the nonvanishing condensate background. Here superregular breather solutions are extended to the generalized nonlinear Schrödinger equation with nonhomogeneous coefficients and in the presence of dissipation. Concrete examples are shown that may allow observation of new solutions in fiber optics where dissipation is unavoidable, nonhomogeneous spatial distribution of the amplification profile can be controlled, and current technology allows design of the longitudinal dispersion profile.</description><identifier>ISSN: 0146-9592</identifier><identifier>EISSN: 1539-4794</identifier><identifier>DOI: 10.1364/OL.395933</identifier><language>eng</language><publisher>Washington: Optical Society of America</publisher><subject>Breathers ; Fiber optics ; Nonlinear analysis ; Optical fibers ; Perturbation ; Schrodinger equation ; Spatial distribution ; Stability analysis</subject><ispartof>Optics letters, 2020-07, Vol.45 (14), p.3913-3916</ispartof><rights>Copyright Optical Society of America Jul 15, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c290t-67be05362ef5d344c19eab1fd80481d55203161260298844fe2cc1a224caa3983</citedby><cites>FETCH-LOGICAL-c290t-67be05362ef5d344c19eab1fd80481d55203161260298844fe2cc1a224caa3983</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,3258,27924,27925</link.rule.ids></links><search><creatorcontrib>Perego, Auro M.</creatorcontrib><title>Exact superregular breather solutions to the generalized nonlinear Schrödinger equation with nonhomogeneous coefficients and dissipative effects</title><title>Optics letters</title><description>Superregular breathers are peculiar solutions to the integrable nonlinear Schrödinger equation that constitute the building blocks for analysis of the nonlinear stage of modulation instability developing from a localized perturbation on the nonvanishing condensate background. Here superregular breather solutions are extended to the generalized nonlinear Schrödinger equation with nonhomogeneous coefficients and in the presence of dissipation. Concrete examples are shown that may allow observation of new solutions in fiber optics where dissipation is unavoidable, nonhomogeneous spatial distribution of the amplification profile can be controlled, and current technology allows design of the longitudinal dispersion profile.</description><subject>Breathers</subject><subject>Fiber optics</subject><subject>Nonlinear analysis</subject><subject>Optical fibers</subject><subject>Perturbation</subject><subject>Schrodinger equation</subject><subject>Spatial distribution</subject><subject>Stability analysis</subject><issn>0146-9592</issn><issn>1539-4794</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpdkUtOwzAQhi0EEqWw4AaW2MAixa-k8RJV5SFV6gJYR64zaV2ldms7vG7BZbgAF8OhrFiNNP_3jUb6ETqnZER5Ia7nsxGXueT8AA1ozmUmxlIcogGhoshSwI7RSQhrQkgx5nyAPqdvSkccui14D8uuVR4vPKi4Ao-Da7tonA04Opw2eAkWvGrNB9TYOtsaC4l_1Cv__VUbu0wO7DrVO_jVxFUPrdzG9Z7rAtYOmsZoAzYGrGyNaxOC2SbhBXCKQMdwio4a1QY4-5tD9Hw7fZrcZ7P53cPkZpZpJknMivECSM4LBk1ecyE0laAWtKlLIkpa5zkjnBaUFYTJshSiAaY1VYwJrRSXJR-iy_3drXe7DkKsNiZoaFv1-2vFBBNElpKIhF78Q9eu8zZ9lyhBKBFFThJ1tae0dyF4aKqtNxvl3ytKqr6caj6r9uXwH1uqhTg</recordid><startdate>20200715</startdate><enddate>20200715</enddate><creator>Perego, Auro M.</creator><general>Optical Society of America</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20200715</creationdate><title>Exact superregular breather solutions to the generalized nonlinear Schrödinger equation with nonhomogeneous coefficients and dissipative effects</title><author>Perego, Auro M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c290t-67be05362ef5d344c19eab1fd80481d55203161260298844fe2cc1a224caa3983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Breathers</topic><topic>Fiber optics</topic><topic>Nonlinear analysis</topic><topic>Optical fibers</topic><topic>Perturbation</topic><topic>Schrodinger equation</topic><topic>Spatial distribution</topic><topic>Stability analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Perego, Auro M.</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Optics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Perego, Auro M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exact superregular breather solutions to the generalized nonlinear Schrödinger equation with nonhomogeneous coefficients and dissipative effects</atitle><jtitle>Optics letters</jtitle><date>2020-07-15</date><risdate>2020</risdate><volume>45</volume><issue>14</issue><spage>3913</spage><epage>3916</epage><pages>3913-3916</pages><issn>0146-9592</issn><eissn>1539-4794</eissn><abstract>Superregular breathers are peculiar solutions to the integrable nonlinear Schrödinger equation that constitute the building blocks for analysis of the nonlinear stage of modulation instability developing from a localized perturbation on the nonvanishing condensate background. Here superregular breather solutions are extended to the generalized nonlinear Schrödinger equation with nonhomogeneous coefficients and in the presence of dissipation. Concrete examples are shown that may allow observation of new solutions in fiber optics where dissipation is unavoidable, nonhomogeneous spatial distribution of the amplification profile can be controlled, and current technology allows design of the longitudinal dispersion profile.</abstract><cop>Washington</cop><pub>Optical Society of America</pub><doi>10.1364/OL.395933</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0146-9592 |
ispartof | Optics letters, 2020-07, Vol.45 (14), p.3913-3916 |
issn | 0146-9592 1539-4794 |
language | eng |
recordid | cdi_proquest_miscellaneous_2424098904 |
source | Optica Publishing Group Journals |
subjects | Breathers Fiber optics Nonlinear analysis Optical fibers Perturbation Schrodinger equation Spatial distribution Stability analysis |
title | Exact superregular breather solutions to the generalized nonlinear Schrödinger equation with nonhomogeneous coefficients and dissipative effects |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T21%3A25%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exact%20superregular%20breather%20solutions%20to%20the%20generalized%20nonlinear%20Schr%C3%B6dinger%20equation%20with%20nonhomogeneous%20coefficients%20and%20dissipative%20effects&rft.jtitle=Optics%20letters&rft.au=Perego,%20Auro%20M.&rft.date=2020-07-15&rft.volume=45&rft.issue=14&rft.spage=3913&rft.epage=3916&rft.pages=3913-3916&rft.issn=0146-9592&rft.eissn=1539-4794&rft_id=info:doi/10.1364/OL.395933&rft_dat=%3Cproquest_cross%3E2440104650%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c290t-67be05362ef5d344c19eab1fd80481d55203161260298844fe2cc1a224caa3983%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2440104650&rft_id=info:pmid/&rfr_iscdi=true |