Loading…

Exact superregular breather solutions to the generalized nonlinear Schrödinger equation with nonhomogeneous coefficients and dissipative effects

Superregular breathers are peculiar solutions to the integrable nonlinear Schrödinger equation that constitute the building blocks for analysis of the nonlinear stage of modulation instability developing from a localized perturbation on the nonvanishing condensate background. Here superregular breat...

Full description

Saved in:
Bibliographic Details
Published in:Optics letters 2020-07, Vol.45 (14), p.3913-3916
Main Author: Perego, Auro M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c290t-67be05362ef5d344c19eab1fd80481d55203161260298844fe2cc1a224caa3983
cites cdi_FETCH-LOGICAL-c290t-67be05362ef5d344c19eab1fd80481d55203161260298844fe2cc1a224caa3983
container_end_page 3916
container_issue 14
container_start_page 3913
container_title Optics letters
container_volume 45
creator Perego, Auro M.
description Superregular breathers are peculiar solutions to the integrable nonlinear Schrödinger equation that constitute the building blocks for analysis of the nonlinear stage of modulation instability developing from a localized perturbation on the nonvanishing condensate background. Here superregular breather solutions are extended to the generalized nonlinear Schrödinger equation with nonhomogeneous coefficients and in the presence of dissipation. Concrete examples are shown that may allow observation of new solutions in fiber optics where dissipation is unavoidable, nonhomogeneous spatial distribution of the amplification profile can be controlled, and current technology allows design of the longitudinal dispersion profile.
doi_str_mv 10.1364/OL.395933
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2424098904</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2440104650</sourcerecordid><originalsourceid>FETCH-LOGICAL-c290t-67be05362ef5d344c19eab1fd80481d55203161260298844fe2cc1a224caa3983</originalsourceid><addsrcrecordid>eNpdkUtOwzAQhi0EEqWw4AaW2MAixa-k8RJV5SFV6gJYR64zaV2ldms7vG7BZbgAF8OhrFiNNP_3jUb6ETqnZER5Ia7nsxGXueT8AA1ozmUmxlIcogGhoshSwI7RSQhrQkgx5nyAPqdvSkccui14D8uuVR4vPKi4Ao-Da7tonA04Opw2eAkWvGrNB9TYOtsaC4l_1Cv__VUbu0wO7DrVO_jVxFUPrdzG9Z7rAtYOmsZoAzYGrGyNaxOC2SbhBXCKQMdwio4a1QY4-5tD9Hw7fZrcZ7P53cPkZpZpJknMivECSM4LBk1ecyE0laAWtKlLIkpa5zkjnBaUFYTJshSiAaY1VYwJrRSXJR-iy_3drXe7DkKsNiZoaFv1-2vFBBNElpKIhF78Q9eu8zZ9lyhBKBFFThJ1tae0dyF4aKqtNxvl3ytKqr6caj6r9uXwH1uqhTg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2440104650</pqid></control><display><type>article</type><title>Exact superregular breather solutions to the generalized nonlinear Schrödinger equation with nonhomogeneous coefficients and dissipative effects</title><source>Optica Publishing Group Journals</source><creator>Perego, Auro M.</creator><creatorcontrib>Perego, Auro M.</creatorcontrib><description>Superregular breathers are peculiar solutions to the integrable nonlinear Schrödinger equation that constitute the building blocks for analysis of the nonlinear stage of modulation instability developing from a localized perturbation on the nonvanishing condensate background. Here superregular breather solutions are extended to the generalized nonlinear Schrödinger equation with nonhomogeneous coefficients and in the presence of dissipation. Concrete examples are shown that may allow observation of new solutions in fiber optics where dissipation is unavoidable, nonhomogeneous spatial distribution of the amplification profile can be controlled, and current technology allows design of the longitudinal dispersion profile.</description><identifier>ISSN: 0146-9592</identifier><identifier>EISSN: 1539-4794</identifier><identifier>DOI: 10.1364/OL.395933</identifier><language>eng</language><publisher>Washington: Optical Society of America</publisher><subject>Breathers ; Fiber optics ; Nonlinear analysis ; Optical fibers ; Perturbation ; Schrodinger equation ; Spatial distribution ; Stability analysis</subject><ispartof>Optics letters, 2020-07, Vol.45 (14), p.3913-3916</ispartof><rights>Copyright Optical Society of America Jul 15, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c290t-67be05362ef5d344c19eab1fd80481d55203161260298844fe2cc1a224caa3983</citedby><cites>FETCH-LOGICAL-c290t-67be05362ef5d344c19eab1fd80481d55203161260298844fe2cc1a224caa3983</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,3258,27924,27925</link.rule.ids></links><search><creatorcontrib>Perego, Auro M.</creatorcontrib><title>Exact superregular breather solutions to the generalized nonlinear Schrödinger equation with nonhomogeneous coefficients and dissipative effects</title><title>Optics letters</title><description>Superregular breathers are peculiar solutions to the integrable nonlinear Schrödinger equation that constitute the building blocks for analysis of the nonlinear stage of modulation instability developing from a localized perturbation on the nonvanishing condensate background. Here superregular breather solutions are extended to the generalized nonlinear Schrödinger equation with nonhomogeneous coefficients and in the presence of dissipation. Concrete examples are shown that may allow observation of new solutions in fiber optics where dissipation is unavoidable, nonhomogeneous spatial distribution of the amplification profile can be controlled, and current technology allows design of the longitudinal dispersion profile.</description><subject>Breathers</subject><subject>Fiber optics</subject><subject>Nonlinear analysis</subject><subject>Optical fibers</subject><subject>Perturbation</subject><subject>Schrodinger equation</subject><subject>Spatial distribution</subject><subject>Stability analysis</subject><issn>0146-9592</issn><issn>1539-4794</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpdkUtOwzAQhi0EEqWw4AaW2MAixa-k8RJV5SFV6gJYR64zaV2ldms7vG7BZbgAF8OhrFiNNP_3jUb6ETqnZER5Ia7nsxGXueT8AA1ozmUmxlIcogGhoshSwI7RSQhrQkgx5nyAPqdvSkccui14D8uuVR4vPKi4Ao-Da7tonA04Opw2eAkWvGrNB9TYOtsaC4l_1Cv__VUbu0wO7DrVO_jVxFUPrdzG9Z7rAtYOmsZoAzYGrGyNaxOC2SbhBXCKQMdwio4a1QY4-5tD9Hw7fZrcZ7P53cPkZpZpJknMivECSM4LBk1ecyE0laAWtKlLIkpa5zkjnBaUFYTJshSiAaY1VYwJrRSXJR-iy_3drXe7DkKsNiZoaFv1-2vFBBNElpKIhF78Q9eu8zZ9lyhBKBFFThJ1tae0dyF4aKqtNxvl3ytKqr6caj6r9uXwH1uqhTg</recordid><startdate>20200715</startdate><enddate>20200715</enddate><creator>Perego, Auro M.</creator><general>Optical Society of America</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20200715</creationdate><title>Exact superregular breather solutions to the generalized nonlinear Schrödinger equation with nonhomogeneous coefficients and dissipative effects</title><author>Perego, Auro M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c290t-67be05362ef5d344c19eab1fd80481d55203161260298844fe2cc1a224caa3983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Breathers</topic><topic>Fiber optics</topic><topic>Nonlinear analysis</topic><topic>Optical fibers</topic><topic>Perturbation</topic><topic>Schrodinger equation</topic><topic>Spatial distribution</topic><topic>Stability analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Perego, Auro M.</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Optics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Perego, Auro M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exact superregular breather solutions to the generalized nonlinear Schrödinger equation with nonhomogeneous coefficients and dissipative effects</atitle><jtitle>Optics letters</jtitle><date>2020-07-15</date><risdate>2020</risdate><volume>45</volume><issue>14</issue><spage>3913</spage><epage>3916</epage><pages>3913-3916</pages><issn>0146-9592</issn><eissn>1539-4794</eissn><abstract>Superregular breathers are peculiar solutions to the integrable nonlinear Schrödinger equation that constitute the building blocks for analysis of the nonlinear stage of modulation instability developing from a localized perturbation on the nonvanishing condensate background. Here superregular breather solutions are extended to the generalized nonlinear Schrödinger equation with nonhomogeneous coefficients and in the presence of dissipation. Concrete examples are shown that may allow observation of new solutions in fiber optics where dissipation is unavoidable, nonhomogeneous spatial distribution of the amplification profile can be controlled, and current technology allows design of the longitudinal dispersion profile.</abstract><cop>Washington</cop><pub>Optical Society of America</pub><doi>10.1364/OL.395933</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0146-9592
ispartof Optics letters, 2020-07, Vol.45 (14), p.3913-3916
issn 0146-9592
1539-4794
language eng
recordid cdi_proquest_miscellaneous_2424098904
source Optica Publishing Group Journals
subjects Breathers
Fiber optics
Nonlinear analysis
Optical fibers
Perturbation
Schrodinger equation
Spatial distribution
Stability analysis
title Exact superregular breather solutions to the generalized nonlinear Schrödinger equation with nonhomogeneous coefficients and dissipative effects
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T21%3A25%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exact%20superregular%20breather%20solutions%20to%20the%20generalized%20nonlinear%20Schr%C3%B6dinger%20equation%20with%20nonhomogeneous%20coefficients%20and%20dissipative%20effects&rft.jtitle=Optics%20letters&rft.au=Perego,%20Auro%20M.&rft.date=2020-07-15&rft.volume=45&rft.issue=14&rft.spage=3913&rft.epage=3916&rft.pages=3913-3916&rft.issn=0146-9592&rft.eissn=1539-4794&rft_id=info:doi/10.1364/OL.395933&rft_dat=%3Cproquest_cross%3E2440104650%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c290t-67be05362ef5d344c19eab1fd80481d55203161260298844fe2cc1a224caa3983%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2440104650&rft_id=info:pmid/&rfr_iscdi=true