Loading…

Comparative analysis of corrosion resistance between beta titanium and Ti-6Al-4V alloys: A systematic review

The knowledge of the electrochemical property (corrosion resistance) of beta titanium alloys compared to Ti-6Al-4 V for implants is relevant because of the potential cytotoxic effects that the released ions could cause to long-term health. The objective of this systematic review was to seek informat...

Full description

Saved in:
Bibliographic Details
Published in:Journal of trace elements in medicine and biology 2020-12, Vol.62, p.126618-126618, Article 126618
Main Authors: Dias Corpa Tardelli, Juliana, Bolfarini, Claudemiro, Cândido dos Reis, Andréa
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The knowledge of the electrochemical property (corrosion resistance) of beta titanium alloys compared to Ti-6Al-4 V for implants is relevant because of the potential cytotoxic effects that the released ions could cause to long-term health. The objective of this systematic review was to seek information on the electrochemical properties (corrosion resistance) of beta titanium alloys compared to Ti-6Al-4 V since the awareness of the electrochemical behavior of the implant surface in the medium is essential for the best indication of the alloys or compositional changes, which may promote benefits to bone-implant interaction in all areas that this procedure is required. The PubMed, LILACS, COCHRANE Library, and Science Direct databases were electronically searched for the terms: dental implants AND beta-titanium AND Ti-6Al-4 V AND electrochemical technics. The inclusion criteria were research articles that studied beta-titanium compared to Ti-6Al-4 V using electrochemical techniques in electrolytes of chemical composition similar to body fluid, published in English, between 2000 and 2020. Articles that did not compare the corrosion resistance of these alloys in electrolytes similar to body fluids were excluded. A total of 189 articles were restored and selected by title and/or abstract according to the inclusion and exclusion criteria, which resulted in 15 articles that were reduced to 8 after read in full. The studies in vitro evaluated the corrosion resistance in electrolytes Hank, Ringer, SBF, and 0.9 % NaCl, between beta titanium alloys, obtained by arc fusion or bars stock, and Ti-6Al-4 V, for dental or biomedical implants submitted to surface treatments by heat treatment, plasma electrolytic oxidation (PEO), alkaline treatment, and thermomechanical. The evaluated literature allowed to determine that 1) The oxides Nb2O 5, Ta2O 5, and ZrO2 have higher stability and protection quality than that of TiO2 modified by the oxides of Al and V; 2) A higher modulus of elasticity of the Ti-6Al-4 V alloy favors protection against corrosion by maintaining a thicker and more firmly adhered oxide layer; 3) The increase in the thickness of the Ti alloys superficial layer contributes to the improvement of the corrosion resistance.
ISSN:0946-672X
1878-3252
DOI:10.1016/j.jtemb.2020.126618