Loading…
Solution growth kinetics and mechanism: Prismatic face of ADP
Laser Michelson interferometry has been applied to in situ study the (001) ADP growth kinetics in aqueous solution in the kinetic regime. The technique allows one to simultaneously measure the slope p of a growth hillock and normal growth rate R provided by this hillock. From these data, the average...
Saved in:
Published in: | Journal of crystal growth 1986-01, Vol.74 (1), p.101-112 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Laser Michelson interferometry has been applied to in situ study the (001) ADP growth kinetics in aqueous solution in the kinetic regime. The technique allows one to simultaneously measure the slope p of a growth hillock and normal growth rate R provided by this hillock. From these data, the average step growth rate v=R/p has been determined as a function of relative supersaturation σ. The dependencev(σ) is found to be linear, demonstrating the unimportance of surface and bulk diffusion. The direct incorporation at steps is characterized by the step kinetic coefficient βl=(5.1-6.4)X10-3 cm/s. The specific step free energy αl=(1.2-1.9) X10-6 erg/cm was determined from the measured linear dependence of the hillock slope on supersaturation for the hillock around presumably single elementary dislocation. For complex dislocation sources with large total Burgers vectors, the tendency to saturationin the hillock slope-supersaturation curves has been found. The curve perfectly fits the BCF expression which takes into account the perimeter 2L of the region occupied by the points in which the dislocation of the complex step source cross the growing face. For two dislocation sources,L=0.92 μm andL=0.31 μm and total Burgers vectors ⋍12h and 6h (h=7.53Å) have been found. The supersaturation dependence of activities for various complex dislocation sources have been directly demonstrated. |
---|---|
ISSN: | 0022-0248 1873-5002 |
DOI: | 10.1016/0022-0248(86)90252-6 |