Loading…

Autophagy core protein ATG5 is required for elongating spermatid development, sperm individualization and normal fertility in male mice

Spermiogenesis is the longest phase of spermatogenesis, with dramatic morphological changes and a final step of spermiation, which involves protein degradation and the removal of excess cytoplasm; therefore, we hypothesized that macroautophagy/autophagy might be involved in the process. To test this...

Full description

Saved in:
Bibliographic Details
Published in:Autophagy 2021-07, Vol.17 (7), p.1753-1767
Main Authors: Huang, Qian, Liu, Yunhao, Zhang, Shiyang, Yap, Yi Tian, Li, Wei, Zhang, David, Gardner, Ahmad, Zhang, Ling, Song, Shizheng, Hess, Rex A, Zhang, Zhibing
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c534t-e56e8f2e558f351c39fc6dcdb4098d8234e2fc593db3d534ba1c114af99569c93
cites cdi_FETCH-LOGICAL-c534t-e56e8f2e558f351c39fc6dcdb4098d8234e2fc593db3d534ba1c114af99569c93
container_end_page 1767
container_issue 7
container_start_page 1753
container_title Autophagy
container_volume 17
creator Huang, Qian
Liu, Yunhao
Zhang, Shiyang
Yap, Yi Tian
Li, Wei
Zhang, David
Gardner, Ahmad
Zhang, Ling
Song, Shizheng
Hess, Rex A
Zhang, Zhibing
description Spermiogenesis is the longest phase of spermatogenesis, with dramatic morphological changes and a final step of spermiation, which involves protein degradation and the removal of excess cytoplasm; therefore, we hypothesized that macroautophagy/autophagy might be involved in the process. To test this hypothesis, we examined the function of ATG5, a core autophagy protein in male germ cell development. Floxed Atg5 and Stra8− iCre mice were crossed to conditionally inactivate Atg5 in male germ cells. In Atg5 flox/flox ; Stra8− iCre mutant mice, testicular expression of the autophagosome marker LC3A/B-II was significantly reduced, and expression of autophagy receptor SQSTM1/p62 was significantly increased, indicating a decrease in testicular autophagy activity. The fertility of mutant mice was dramatically reduced with about 70% being infertile. Sperm counts and motility were also significantly reduced compared to controls. Histological examination of the mutant testes revealed numerous, large residual bodies in the lumen of stages after their normal resorption within the seminiferous epithelium. The cauda epididymal lumen was filled with sloughed germ cells, large cytoplasmic bodies, and spermatozoa with disorganized heads and tails. Examination of cauda epididymal sperm by electron microscopy revealed misshapen sperm heads, a discontinuous accessory structure in the mid-piece and abnormal acrosome formation and loss of sperm individualization. Immunofluorescence staining of epididymal sperm showed abnormal mitochondria and acrosome distribution in the mutant mice. ATG5 was shown to induce autophagy by mediating multiple signals to maintain normal developmental processes. Our study demonstrated ATG5 is essential for male fertility and is involved in various aspects of spermiogenesis. Abbreviations: AKAP4: a-kinase anchoring protein 4; ATG5: autophagy-related 5; ATG7: autophagy-related 7; ATG10: autophagy-related 10; ATG12: autophagy-related 12; cKO: conditional knockout; DDX4: DEAD-box helicase 4; MAP1LC3/LC3/tg8: microtubule-associated protein 1 light chain 3; PBS: phosphate-buffered saline; PIWIL2/MILI: piwi like RNA-mediated gene silencing 2; RT-PCR: reverse transcription-polymerase chain reaction; SQSTM1/p62: sequestosome 1; TBC: tubulobulbar complexes; WT: wild type.
doi_str_mv 10.1080/15548627.2020.1783822
format article
fullrecord <record><control><sourceid>proquest_infor</sourceid><recordid>TN_cdi_proquest_miscellaneous_2424999076</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2424999076</sourcerecordid><originalsourceid>FETCH-LOGICAL-c534t-e56e8f2e558f351c39fc6dcdb4098d8234e2fc593db3d534ba1c114af99569c93</originalsourceid><addsrcrecordid>eNp9kc1uGyEUhUdVo-avj9CKZRd1ysAwA5uqVtSklSJlk6wRhotDxcAEGFfuC_S1i2XHajddgQ7fOfeK0zTvWnzVYo4_tYx1vCfDFcGkSgOnnJBXzdlOX_CestfHOxlOm_Ocf2BMey7Im-aUkn4YGGZnze_lXOL0pNZbpGMCNKVYwAW0fLhlyGWU4Hl2CQyyMSHwMaxVcWGN8gRprFeDDGyqPo0Qyse9jFwwbuPMrLz7VZkYkAoGhVgdHllIxXlXthVDVQA0Og2XzYlVPsPbw3nRPN58fbj-tri7v_1-vbxbaEa7sgDWA7cEGOOWslZTYXVvtFl1WHDDCe2AWM0ENStqqmOlWt22nbJCsF5oQS-az_vcaV6NYHTdOikvp-RGlbYyKif_fQnuSa7jRnLKuppbAz4cAlJ8niEXObqswXsVIM5Zko50Qgg89BVle1SnmHMCexzTYrkrUb6UKHclykOJ1ff-7x2PrpfWKvBlD7hgd5_6MyZvZFFbH5NNKmiXJf3_jD_xL7Aq</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2424999076</pqid></control><display><type>article</type><title>Autophagy core protein ATG5 is required for elongating spermatid development, sperm individualization and normal fertility in male mice</title><source>Taylor and Francis:Jisc Collections:Taylor and Francis Read and Publish Agreement 2024-2025:Science and Technology Collection (Reading list)</source><source>PubMed Central</source><creator>Huang, Qian ; Liu, Yunhao ; Zhang, Shiyang ; Yap, Yi Tian ; Li, Wei ; Zhang, David ; Gardner, Ahmad ; Zhang, Ling ; Song, Shizheng ; Hess, Rex A ; Zhang, Zhibing</creator><creatorcontrib>Huang, Qian ; Liu, Yunhao ; Zhang, Shiyang ; Yap, Yi Tian ; Li, Wei ; Zhang, David ; Gardner, Ahmad ; Zhang, Ling ; Song, Shizheng ; Hess, Rex A ; Zhang, Zhibing</creatorcontrib><description>Spermiogenesis is the longest phase of spermatogenesis, with dramatic morphological changes and a final step of spermiation, which involves protein degradation and the removal of excess cytoplasm; therefore, we hypothesized that macroautophagy/autophagy might be involved in the process. To test this hypothesis, we examined the function of ATG5, a core autophagy protein in male germ cell development. Floxed Atg5 and Stra8− iCre mice were crossed to conditionally inactivate Atg5 in male germ cells. In Atg5 flox/flox ; Stra8− iCre mutant mice, testicular expression of the autophagosome marker LC3A/B-II was significantly reduced, and expression of autophagy receptor SQSTM1/p62 was significantly increased, indicating a decrease in testicular autophagy activity. The fertility of mutant mice was dramatically reduced with about 70% being infertile. Sperm counts and motility were also significantly reduced compared to controls. Histological examination of the mutant testes revealed numerous, large residual bodies in the lumen of stages after their normal resorption within the seminiferous epithelium. The cauda epididymal lumen was filled with sloughed germ cells, large cytoplasmic bodies, and spermatozoa with disorganized heads and tails. Examination of cauda epididymal sperm by electron microscopy revealed misshapen sperm heads, a discontinuous accessory structure in the mid-piece and abnormal acrosome formation and loss of sperm individualization. Immunofluorescence staining of epididymal sperm showed abnormal mitochondria and acrosome distribution in the mutant mice. ATG5 was shown to induce autophagy by mediating multiple signals to maintain normal developmental processes. Our study demonstrated ATG5 is essential for male fertility and is involved in various aspects of spermiogenesis. Abbreviations: AKAP4: a-kinase anchoring protein 4; ATG5: autophagy-related 5; ATG7: autophagy-related 7; ATG10: autophagy-related 10; ATG12: autophagy-related 12; cKO: conditional knockout; DDX4: DEAD-box helicase 4; MAP1LC3/LC3/tg8: microtubule-associated protein 1 light chain 3; PBS: phosphate-buffered saline; PIWIL2/MILI: piwi like RNA-mediated gene silencing 2; RT-PCR: reverse transcription-polymerase chain reaction; SQSTM1/p62: sequestosome 1; TBC: tubulobulbar complexes; WT: wild type.</description><identifier>ISSN: 1554-8627</identifier><identifier>EISSN: 1554-8635</identifier><identifier>DOI: 10.1080/15548627.2020.1783822</identifier><identifier>PMID: 32677505</identifier><language>eng</language><publisher>United States: Taylor &amp; Francis</publisher><subject>Acrosome ; Acrosome - metabolism ; Animals ; ATG5 ; Autophagy ; Autophagy-Related Protein 5 - metabolism ; Autophagy-Related Protein 5 - physiology ; Blotting, Western ; Epididymis - anatomy &amp; histology ; Fertility - physiology ; Fluorescent Antibody Technique ; individualization ; Male ; male germ cells ; male reproduction ; Mice ; Mice, Knockout ; mitochondria ; Real-Time Polymerase Chain Reaction ; Research Paper ; Sperm Count ; Spermatids - growth &amp; development ; Spermatogenesis - physiology ; Spermatozoa - growth &amp; development ; spermiogenesis ; Testis - anatomy &amp; histology</subject><ispartof>Autophagy, 2021-07, Vol.17 (7), p.1753-1767</ispartof><rights>2020 Informa UK Limited, trading as Taylor &amp; Francis Group 2020</rights><rights>2020 Informa UK Limited, trading as Taylor &amp; Francis Group 2020 Informa UK Limited, trading as Taylor &amp; Francis Group</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c534t-e56e8f2e558f351c39fc6dcdb4098d8234e2fc593db3d534ba1c114af99569c93</citedby><cites>FETCH-LOGICAL-c534t-e56e8f2e558f351c39fc6dcdb4098d8234e2fc593db3d534ba1c114af99569c93</cites><orcidid>0000-0003-2649-3563</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8354593/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8354593/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32677505$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Huang, Qian</creatorcontrib><creatorcontrib>Liu, Yunhao</creatorcontrib><creatorcontrib>Zhang, Shiyang</creatorcontrib><creatorcontrib>Yap, Yi Tian</creatorcontrib><creatorcontrib>Li, Wei</creatorcontrib><creatorcontrib>Zhang, David</creatorcontrib><creatorcontrib>Gardner, Ahmad</creatorcontrib><creatorcontrib>Zhang, Ling</creatorcontrib><creatorcontrib>Song, Shizheng</creatorcontrib><creatorcontrib>Hess, Rex A</creatorcontrib><creatorcontrib>Zhang, Zhibing</creatorcontrib><title>Autophagy core protein ATG5 is required for elongating spermatid development, sperm individualization and normal fertility in male mice</title><title>Autophagy</title><addtitle>Autophagy</addtitle><description>Spermiogenesis is the longest phase of spermatogenesis, with dramatic morphological changes and a final step of spermiation, which involves protein degradation and the removal of excess cytoplasm; therefore, we hypothesized that macroautophagy/autophagy might be involved in the process. To test this hypothesis, we examined the function of ATG5, a core autophagy protein in male germ cell development. Floxed Atg5 and Stra8− iCre mice were crossed to conditionally inactivate Atg5 in male germ cells. In Atg5 flox/flox ; Stra8− iCre mutant mice, testicular expression of the autophagosome marker LC3A/B-II was significantly reduced, and expression of autophagy receptor SQSTM1/p62 was significantly increased, indicating a decrease in testicular autophagy activity. The fertility of mutant mice was dramatically reduced with about 70% being infertile. Sperm counts and motility were also significantly reduced compared to controls. Histological examination of the mutant testes revealed numerous, large residual bodies in the lumen of stages after their normal resorption within the seminiferous epithelium. The cauda epididymal lumen was filled with sloughed germ cells, large cytoplasmic bodies, and spermatozoa with disorganized heads and tails. Examination of cauda epididymal sperm by electron microscopy revealed misshapen sperm heads, a discontinuous accessory structure in the mid-piece and abnormal acrosome formation and loss of sperm individualization. Immunofluorescence staining of epididymal sperm showed abnormal mitochondria and acrosome distribution in the mutant mice. ATG5 was shown to induce autophagy by mediating multiple signals to maintain normal developmental processes. Our study demonstrated ATG5 is essential for male fertility and is involved in various aspects of spermiogenesis. Abbreviations: AKAP4: a-kinase anchoring protein 4; ATG5: autophagy-related 5; ATG7: autophagy-related 7; ATG10: autophagy-related 10; ATG12: autophagy-related 12; cKO: conditional knockout; DDX4: DEAD-box helicase 4; MAP1LC3/LC3/tg8: microtubule-associated protein 1 light chain 3; PBS: phosphate-buffered saline; PIWIL2/MILI: piwi like RNA-mediated gene silencing 2; RT-PCR: reverse transcription-polymerase chain reaction; SQSTM1/p62: sequestosome 1; TBC: tubulobulbar complexes; WT: wild type.</description><subject>Acrosome</subject><subject>Acrosome - metabolism</subject><subject>Animals</subject><subject>ATG5</subject><subject>Autophagy</subject><subject>Autophagy-Related Protein 5 - metabolism</subject><subject>Autophagy-Related Protein 5 - physiology</subject><subject>Blotting, Western</subject><subject>Epididymis - anatomy &amp; histology</subject><subject>Fertility - physiology</subject><subject>Fluorescent Antibody Technique</subject><subject>individualization</subject><subject>Male</subject><subject>male germ cells</subject><subject>male reproduction</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>mitochondria</subject><subject>Real-Time Polymerase Chain Reaction</subject><subject>Research Paper</subject><subject>Sperm Count</subject><subject>Spermatids - growth &amp; development</subject><subject>Spermatogenesis - physiology</subject><subject>Spermatozoa - growth &amp; development</subject><subject>spermiogenesis</subject><subject>Testis - anatomy &amp; histology</subject><issn>1554-8627</issn><issn>1554-8635</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kc1uGyEUhUdVo-avj9CKZRd1ysAwA5uqVtSklSJlk6wRhotDxcAEGFfuC_S1i2XHajddgQ7fOfeK0zTvWnzVYo4_tYx1vCfDFcGkSgOnnJBXzdlOX_CestfHOxlOm_Ocf2BMey7Im-aUkn4YGGZnze_lXOL0pNZbpGMCNKVYwAW0fLhlyGWU4Hl2CQyyMSHwMaxVcWGN8gRprFeDDGyqPo0Qyse9jFwwbuPMrLz7VZkYkAoGhVgdHllIxXlXthVDVQA0Og2XzYlVPsPbw3nRPN58fbj-tri7v_1-vbxbaEa7sgDWA7cEGOOWslZTYXVvtFl1WHDDCe2AWM0ENStqqmOlWt22nbJCsF5oQS-az_vcaV6NYHTdOikvp-RGlbYyKif_fQnuSa7jRnLKuppbAz4cAlJ8niEXObqswXsVIM5Zko50Qgg89BVle1SnmHMCexzTYrkrUb6UKHclykOJ1ff-7x2PrpfWKvBlD7hgd5_6MyZvZFFbH5NNKmiXJf3_jD_xL7Aq</recordid><startdate>20210703</startdate><enddate>20210703</enddate><creator>Huang, Qian</creator><creator>Liu, Yunhao</creator><creator>Zhang, Shiyang</creator><creator>Yap, Yi Tian</creator><creator>Li, Wei</creator><creator>Zhang, David</creator><creator>Gardner, Ahmad</creator><creator>Zhang, Ling</creator><creator>Song, Shizheng</creator><creator>Hess, Rex A</creator><creator>Zhang, Zhibing</creator><general>Taylor &amp; Francis</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-2649-3563</orcidid></search><sort><creationdate>20210703</creationdate><title>Autophagy core protein ATG5 is required for elongating spermatid development, sperm individualization and normal fertility in male mice</title><author>Huang, Qian ; Liu, Yunhao ; Zhang, Shiyang ; Yap, Yi Tian ; Li, Wei ; Zhang, David ; Gardner, Ahmad ; Zhang, Ling ; Song, Shizheng ; Hess, Rex A ; Zhang, Zhibing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c534t-e56e8f2e558f351c39fc6dcdb4098d8234e2fc593db3d534ba1c114af99569c93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Acrosome</topic><topic>Acrosome - metabolism</topic><topic>Animals</topic><topic>ATG5</topic><topic>Autophagy</topic><topic>Autophagy-Related Protein 5 - metabolism</topic><topic>Autophagy-Related Protein 5 - physiology</topic><topic>Blotting, Western</topic><topic>Epididymis - anatomy &amp; histology</topic><topic>Fertility - physiology</topic><topic>Fluorescent Antibody Technique</topic><topic>individualization</topic><topic>Male</topic><topic>male germ cells</topic><topic>male reproduction</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>mitochondria</topic><topic>Real-Time Polymerase Chain Reaction</topic><topic>Research Paper</topic><topic>Sperm Count</topic><topic>Spermatids - growth &amp; development</topic><topic>Spermatogenesis - physiology</topic><topic>Spermatozoa - growth &amp; development</topic><topic>spermiogenesis</topic><topic>Testis - anatomy &amp; histology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Qian</creatorcontrib><creatorcontrib>Liu, Yunhao</creatorcontrib><creatorcontrib>Zhang, Shiyang</creatorcontrib><creatorcontrib>Yap, Yi Tian</creatorcontrib><creatorcontrib>Li, Wei</creatorcontrib><creatorcontrib>Zhang, David</creatorcontrib><creatorcontrib>Gardner, Ahmad</creatorcontrib><creatorcontrib>Zhang, Ling</creatorcontrib><creatorcontrib>Song, Shizheng</creatorcontrib><creatorcontrib>Hess, Rex A</creatorcontrib><creatorcontrib>Zhang, Zhibing</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Autophagy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Qian</au><au>Liu, Yunhao</au><au>Zhang, Shiyang</au><au>Yap, Yi Tian</au><au>Li, Wei</au><au>Zhang, David</au><au>Gardner, Ahmad</au><au>Zhang, Ling</au><au>Song, Shizheng</au><au>Hess, Rex A</au><au>Zhang, Zhibing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Autophagy core protein ATG5 is required for elongating spermatid development, sperm individualization and normal fertility in male mice</atitle><jtitle>Autophagy</jtitle><addtitle>Autophagy</addtitle><date>2021-07-03</date><risdate>2021</risdate><volume>17</volume><issue>7</issue><spage>1753</spage><epage>1767</epage><pages>1753-1767</pages><issn>1554-8627</issn><eissn>1554-8635</eissn><abstract>Spermiogenesis is the longest phase of spermatogenesis, with dramatic morphological changes and a final step of spermiation, which involves protein degradation and the removal of excess cytoplasm; therefore, we hypothesized that macroautophagy/autophagy might be involved in the process. To test this hypothesis, we examined the function of ATG5, a core autophagy protein in male germ cell development. Floxed Atg5 and Stra8− iCre mice were crossed to conditionally inactivate Atg5 in male germ cells. In Atg5 flox/flox ; Stra8− iCre mutant mice, testicular expression of the autophagosome marker LC3A/B-II was significantly reduced, and expression of autophagy receptor SQSTM1/p62 was significantly increased, indicating a decrease in testicular autophagy activity. The fertility of mutant mice was dramatically reduced with about 70% being infertile. Sperm counts and motility were also significantly reduced compared to controls. Histological examination of the mutant testes revealed numerous, large residual bodies in the lumen of stages after their normal resorption within the seminiferous epithelium. The cauda epididymal lumen was filled with sloughed germ cells, large cytoplasmic bodies, and spermatozoa with disorganized heads and tails. Examination of cauda epididymal sperm by electron microscopy revealed misshapen sperm heads, a discontinuous accessory structure in the mid-piece and abnormal acrosome formation and loss of sperm individualization. Immunofluorescence staining of epididymal sperm showed abnormal mitochondria and acrosome distribution in the mutant mice. ATG5 was shown to induce autophagy by mediating multiple signals to maintain normal developmental processes. Our study demonstrated ATG5 is essential for male fertility and is involved in various aspects of spermiogenesis. Abbreviations: AKAP4: a-kinase anchoring protein 4; ATG5: autophagy-related 5; ATG7: autophagy-related 7; ATG10: autophagy-related 10; ATG12: autophagy-related 12; cKO: conditional knockout; DDX4: DEAD-box helicase 4; MAP1LC3/LC3/tg8: microtubule-associated protein 1 light chain 3; PBS: phosphate-buffered saline; PIWIL2/MILI: piwi like RNA-mediated gene silencing 2; RT-PCR: reverse transcription-polymerase chain reaction; SQSTM1/p62: sequestosome 1; TBC: tubulobulbar complexes; WT: wild type.</abstract><cop>United States</cop><pub>Taylor &amp; Francis</pub><pmid>32677505</pmid><doi>10.1080/15548627.2020.1783822</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-2649-3563</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1554-8627
ispartof Autophagy, 2021-07, Vol.17 (7), p.1753-1767
issn 1554-8627
1554-8635
language eng
recordid cdi_proquest_miscellaneous_2424999076
source Taylor and Francis:Jisc Collections:Taylor and Francis Read and Publish Agreement 2024-2025:Science and Technology Collection (Reading list); PubMed Central
subjects Acrosome
Acrosome - metabolism
Animals
ATG5
Autophagy
Autophagy-Related Protein 5 - metabolism
Autophagy-Related Protein 5 - physiology
Blotting, Western
Epididymis - anatomy & histology
Fertility - physiology
Fluorescent Antibody Technique
individualization
Male
male germ cells
male reproduction
Mice
Mice, Knockout
mitochondria
Real-Time Polymerase Chain Reaction
Research Paper
Sperm Count
Spermatids - growth & development
Spermatogenesis - physiology
Spermatozoa - growth & development
spermiogenesis
Testis - anatomy & histology
title Autophagy core protein ATG5 is required for elongating spermatid development, sperm individualization and normal fertility in male mice
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T19%3A34%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Autophagy%20core%20protein%20ATG5%20is%20required%20for%20elongating%20spermatid%20development,%20sperm%20individualization%20and%20normal%20fertility%20in%20male%20mice&rft.jtitle=Autophagy&rft.au=Huang,%20Qian&rft.date=2021-07-03&rft.volume=17&rft.issue=7&rft.spage=1753&rft.epage=1767&rft.pages=1753-1767&rft.issn=1554-8627&rft.eissn=1554-8635&rft_id=info:doi/10.1080/15548627.2020.1783822&rft_dat=%3Cproquest_infor%3E2424999076%3C/proquest_infor%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c534t-e56e8f2e558f351c39fc6dcdb4098d8234e2fc593db3d534ba1c114af99569c93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2424999076&rft_id=info:pmid/32677505&rfr_iscdi=true