Loading…
Dual Photo- and pH-Responsive Spirooxazine-Functionalized Dextran Nanoparticles
A dual photo- and pH-responsive spirooxazine-functionalized polymer was synthesized by functionalization of dextran with a spirooxazine derivative (SO-COOH). The functionalized dextran derivatives can form nanoparticles in aqueous medium. Under UV light irradiation, the spirooxazine-functionalized d...
Saved in:
Published in: | Biomacromolecules 2020-09, Vol.21 (9), p.3620-3630 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A dual photo- and pH-responsive spirooxazine-functionalized polymer was synthesized by functionalization of dextran with a spirooxazine derivative (SO-COOH). The functionalized dextran derivatives can form nanoparticles in aqueous medium. Under UV light irradiation, the spirooxazine-functionalized dextran (Dex-SO) nanoparticles isomerize to zwitterionic merocyanine-functionalized dextran (Dex-MC), which leads to aggregation. However, the process is reversible upon irradiation with visible light. Under acidic conditions, the hydrophobic spirooxazine is protonated, and the nanoparticles aggregate or swell at pH values of 5 or 3, respectively. The encapsulation of the hydrophobic fluorescent dye Nile Red as model drug allowed us to gain more information about the structural changes under stimulation of UV light and acid treatment. |
---|---|
ISSN: | 1525-7797 1526-4602 |
DOI: | 10.1021/acs.biomac.0c00642 |