Loading…
Effect of predictability of the magnitude of a perturbation on anticipatory and compensatory postural adjustments
Balance maintenance in response to a perturbation could be affected by the predictability of the magnitude of the body disturbance. We investigated anticipatory (APAs) and compensatory (CPAs) postural adjustments in response to perturbations of predictable and unpredictable magnitudes. Twenty young...
Saved in:
Published in: | Experimental brain research 2020-10, Vol.238 (10), p.2207-2219 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Balance maintenance in response to a perturbation could be affected by the predictability of the magnitude of the body disturbance. We investigated anticipatory (APAs) and compensatory (CPAs) postural adjustments in response to perturbations of predictable and unpredictable magnitudes. Twenty young adults received series of perturbations of small or large magnitudes the order of which was varied. Electromyographic activity of six leg and trunk muscles and displacements of the center-of-pressure (COP) were recorded. The muscle onset time, integrals of muscle activity, and COP displacements in the anterior–posterior direction were analyzed during the APA and CPA phases. The results indicated that when the participants were exposed to the repeated perturbation magnitude, it became predictable and they generated APAs more precisely according to the magnitudes of the perturbation. Moreover, when the magnitude of perturbation changed unpredictably, the participants overestimated or underestimated the magnitudes of the perturbation, as they generated APAs based on their prior experience of dealing with the perturbation. The optimal adjustment of APAs occurred after five trials of repeated perturbations. The findings imply that the process of APAs and CPAs generation depends on the accuracy of the predictability of perturbation magnitudes. |
---|---|
ISSN: | 0014-4819 1432-1106 |
DOI: | 10.1007/s00221-020-05883-y |