Loading…

Design Principles for Enhancing Photoluminescence Quantum Yield in Hybrid Manganese Bromides

Hybrid manganese halides have attracted widespread attention because of their highly emissive optical properties. To understand the underlying structural factors that dictate the photoluminescence quantum yield (PLQY) of these materials, we report five new hybrid manganese bromides with the general...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the American Chemical Society 2020-08, Vol.142 (31), p.13582-13589
Main Authors: Mao, Lingling, Guo, Peijun, Wang, Shuxin, Cheetham, Anthony K, Seshadri, Ram
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a362t-b608824d39d76e34cdf6979dd64375e93153d3e504de895c4c7ce6f8c0bf66da3
cites cdi_FETCH-LOGICAL-a362t-b608824d39d76e34cdf6979dd64375e93153d3e504de895c4c7ce6f8c0bf66da3
container_end_page 13589
container_issue 31
container_start_page 13582
container_title Journal of the American Chemical Society
container_volume 142
creator Mao, Lingling
Guo, Peijun
Wang, Shuxin
Cheetham, Anthony K
Seshadri, Ram
description Hybrid manganese halides have attracted widespread attention because of their highly emissive optical properties. To understand the underlying structural factors that dictate the photoluminescence quantum yield (PLQY) of these materials, we report five new hybrid manganese bromides with the general formula A m MnBr4 [m = 1 or 2, A = dimethyl­ammonium (DMA), 3-methyl­piperidinium (3MP), 3-aminomethyl­piperidinium (3AMP), heptamethyl­enimine (HEP), and trimethylphenyl­ammonium (TMPEA)]. By studying the crystal structures and optical properties of these materials and combining our results with the findings from previously reported analogs, we have found a direct correlation between Mn···Mn distance and the PLQY, where high PLQYs are associated with long Mn···Mn distances. This effect can be viewed as a manifestation of the concentration-quenching effect, except these are in stoichiometric compounds with precise interatomic distances rather than random alloys. To gain better separation of the Mn centers and prevent energy transfer, a bulky singly protonated cation that avoids H-bonding is ideal. We have demonstrated this principle in one of our newly reported material, (TMPEA)2MnBr4, where a PLQY of 70.8% for a powder sample and 98% for a large single crystal sample is achieved. Our study reveals a generalized method for improving PLQYs in hybrid manganese bromides and is readily extended to designing all varieties of highly emissive hybrid materials.
doi_str_mv 10.1021/jacs.0c06039
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2426181829</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2426181829</sourcerecordid><originalsourceid>FETCH-LOGICAL-a362t-b608824d39d76e34cdf6979dd64375e93153d3e504de895c4c7ce6f8c0bf66da3</originalsourceid><addsrcrecordid>eNptkL1PwzAQxS0EoqWwMSOPDKT4I3GcEUr5kIooEgxISJFjX1pXiVPsZOh_T6oWWJhOT_rdu3cPoXNKxpQwer1SOoyJJoLw7AANacJIlFAmDtGQEMKiVAo-QCchrHoZM0mP0YAzkfFEJkP0eQfBLhyee-u0XVcQcNl4PHVL1Wu3wPNl0zZVV1sHQYPTgF875dquxh8WKoOtw4-bwluDn5VbqJ4CfOub2hoIp-ioVFWAs_0coff76dvkMZq9PDxNbmaR4oK1USGIlCw2PDOpAB5rU4oszYwRMU8TyDhNuOGQkNiAzBId61SDKKUmRSmEUXyELne-a998dRDavLZ92Krq4zRdyFnMBJVUsqxHr3ao9k0IHsp87W2t_CanJN_2mW_7zPd99vjF3rkrajC_8E-Bf6e3W6um865_9H-vbyOzfs0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2426181829</pqid></control><display><type>article</type><title>Design Principles for Enhancing Photoluminescence Quantum Yield in Hybrid Manganese Bromides</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Mao, Lingling ; Guo, Peijun ; Wang, Shuxin ; Cheetham, Anthony K ; Seshadri, Ram</creator><creatorcontrib>Mao, Lingling ; Guo, Peijun ; Wang, Shuxin ; Cheetham, Anthony K ; Seshadri, Ram</creatorcontrib><description>Hybrid manganese halides have attracted widespread attention because of their highly emissive optical properties. To understand the underlying structural factors that dictate the photoluminescence quantum yield (PLQY) of these materials, we report five new hybrid manganese bromides with the general formula A m MnBr4 [m = 1 or 2, A = dimethyl­ammonium (DMA), 3-methyl­piperidinium (3MP), 3-aminomethyl­piperidinium (3AMP), heptamethyl­enimine (HEP), and trimethylphenyl­ammonium (TMPEA)]. By studying the crystal structures and optical properties of these materials and combining our results with the findings from previously reported analogs, we have found a direct correlation between Mn···Mn distance and the PLQY, where high PLQYs are associated with long Mn···Mn distances. This effect can be viewed as a manifestation of the concentration-quenching effect, except these are in stoichiometric compounds with precise interatomic distances rather than random alloys. To gain better separation of the Mn centers and prevent energy transfer, a bulky singly protonated cation that avoids H-bonding is ideal. We have demonstrated this principle in one of our newly reported material, (TMPEA)2MnBr4, where a PLQY of 70.8% for a powder sample and 98% for a large single crystal sample is achieved. Our study reveals a generalized method for improving PLQYs in hybrid manganese bromides and is readily extended to designing all varieties of highly emissive hybrid materials.</description><identifier>ISSN: 0002-7863</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/jacs.0c06039</identifier><identifier>PMID: 32693585</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Bromides - chemistry ; Crystallography, X-Ray ; Luminescence ; Manganese - chemistry ; Models, Molecular ; Molecular Structure ; Photochemical Processes ; Quantum Theory</subject><ispartof>Journal of the American Chemical Society, 2020-08, Vol.142 (31), p.13582-13589</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a362t-b608824d39d76e34cdf6979dd64375e93153d3e504de895c4c7ce6f8c0bf66da3</citedby><cites>FETCH-LOGICAL-a362t-b608824d39d76e34cdf6979dd64375e93153d3e504de895c4c7ce6f8c0bf66da3</cites><orcidid>0000-0003-3166-8559 ; 0000-0001-5858-4027 ; 0000-0003-1518-4845 ; 0000-0001-5732-7061</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32693585$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mao, Lingling</creatorcontrib><creatorcontrib>Guo, Peijun</creatorcontrib><creatorcontrib>Wang, Shuxin</creatorcontrib><creatorcontrib>Cheetham, Anthony K</creatorcontrib><creatorcontrib>Seshadri, Ram</creatorcontrib><title>Design Principles for Enhancing Photoluminescence Quantum Yield in Hybrid Manganese Bromides</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>Hybrid manganese halides have attracted widespread attention because of their highly emissive optical properties. To understand the underlying structural factors that dictate the photoluminescence quantum yield (PLQY) of these materials, we report five new hybrid manganese bromides with the general formula A m MnBr4 [m = 1 or 2, A = dimethyl­ammonium (DMA), 3-methyl­piperidinium (3MP), 3-aminomethyl­piperidinium (3AMP), heptamethyl­enimine (HEP), and trimethylphenyl­ammonium (TMPEA)]. By studying the crystal structures and optical properties of these materials and combining our results with the findings from previously reported analogs, we have found a direct correlation between Mn···Mn distance and the PLQY, where high PLQYs are associated with long Mn···Mn distances. This effect can be viewed as a manifestation of the concentration-quenching effect, except these are in stoichiometric compounds with precise interatomic distances rather than random alloys. To gain better separation of the Mn centers and prevent energy transfer, a bulky singly protonated cation that avoids H-bonding is ideal. We have demonstrated this principle in one of our newly reported material, (TMPEA)2MnBr4, where a PLQY of 70.8% for a powder sample and 98% for a large single crystal sample is achieved. Our study reveals a generalized method for improving PLQYs in hybrid manganese bromides and is readily extended to designing all varieties of highly emissive hybrid materials.</description><subject>Bromides - chemistry</subject><subject>Crystallography, X-Ray</subject><subject>Luminescence</subject><subject>Manganese - chemistry</subject><subject>Models, Molecular</subject><subject>Molecular Structure</subject><subject>Photochemical Processes</subject><subject>Quantum Theory</subject><issn>0002-7863</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNptkL1PwzAQxS0EoqWwMSOPDKT4I3GcEUr5kIooEgxISJFjX1pXiVPsZOh_T6oWWJhOT_rdu3cPoXNKxpQwer1SOoyJJoLw7AANacJIlFAmDtGQEMKiVAo-QCchrHoZM0mP0YAzkfFEJkP0eQfBLhyee-u0XVcQcNl4PHVL1Wu3wPNl0zZVV1sHQYPTgF875dquxh8WKoOtw4-bwluDn5VbqJ4CfOub2hoIp-ioVFWAs_0coff76dvkMZq9PDxNbmaR4oK1USGIlCw2PDOpAB5rU4oszYwRMU8TyDhNuOGQkNiAzBId61SDKKUmRSmEUXyELne-a998dRDavLZ92Krq4zRdyFnMBJVUsqxHr3ao9k0IHsp87W2t_CanJN_2mW_7zPd99vjF3rkrajC_8E-Bf6e3W6um865_9H-vbyOzfs0</recordid><startdate>20200805</startdate><enddate>20200805</enddate><creator>Mao, Lingling</creator><creator>Guo, Peijun</creator><creator>Wang, Shuxin</creator><creator>Cheetham, Anthony K</creator><creator>Seshadri, Ram</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3166-8559</orcidid><orcidid>https://orcid.org/0000-0001-5858-4027</orcidid><orcidid>https://orcid.org/0000-0003-1518-4845</orcidid><orcidid>https://orcid.org/0000-0001-5732-7061</orcidid></search><sort><creationdate>20200805</creationdate><title>Design Principles for Enhancing Photoluminescence Quantum Yield in Hybrid Manganese Bromides</title><author>Mao, Lingling ; Guo, Peijun ; Wang, Shuxin ; Cheetham, Anthony K ; Seshadri, Ram</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a362t-b608824d39d76e34cdf6979dd64375e93153d3e504de895c4c7ce6f8c0bf66da3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Bromides - chemistry</topic><topic>Crystallography, X-Ray</topic><topic>Luminescence</topic><topic>Manganese - chemistry</topic><topic>Models, Molecular</topic><topic>Molecular Structure</topic><topic>Photochemical Processes</topic><topic>Quantum Theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mao, Lingling</creatorcontrib><creatorcontrib>Guo, Peijun</creatorcontrib><creatorcontrib>Wang, Shuxin</creatorcontrib><creatorcontrib>Cheetham, Anthony K</creatorcontrib><creatorcontrib>Seshadri, Ram</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mao, Lingling</au><au>Guo, Peijun</au><au>Wang, Shuxin</au><au>Cheetham, Anthony K</au><au>Seshadri, Ram</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design Principles for Enhancing Photoluminescence Quantum Yield in Hybrid Manganese Bromides</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2020-08-05</date><risdate>2020</risdate><volume>142</volume><issue>31</issue><spage>13582</spage><epage>13589</epage><pages>13582-13589</pages><issn>0002-7863</issn><eissn>1520-5126</eissn><abstract>Hybrid manganese halides have attracted widespread attention because of their highly emissive optical properties. To understand the underlying structural factors that dictate the photoluminescence quantum yield (PLQY) of these materials, we report five new hybrid manganese bromides with the general formula A m MnBr4 [m = 1 or 2, A = dimethyl­ammonium (DMA), 3-methyl­piperidinium (3MP), 3-aminomethyl­piperidinium (3AMP), heptamethyl­enimine (HEP), and trimethylphenyl­ammonium (TMPEA)]. By studying the crystal structures and optical properties of these materials and combining our results with the findings from previously reported analogs, we have found a direct correlation between Mn···Mn distance and the PLQY, where high PLQYs are associated with long Mn···Mn distances. This effect can be viewed as a manifestation of the concentration-quenching effect, except these are in stoichiometric compounds with precise interatomic distances rather than random alloys. To gain better separation of the Mn centers and prevent energy transfer, a bulky singly protonated cation that avoids H-bonding is ideal. We have demonstrated this principle in one of our newly reported material, (TMPEA)2MnBr4, where a PLQY of 70.8% for a powder sample and 98% for a large single crystal sample is achieved. Our study reveals a generalized method for improving PLQYs in hybrid manganese bromides and is readily extended to designing all varieties of highly emissive hybrid materials.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>32693585</pmid><doi>10.1021/jacs.0c06039</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-3166-8559</orcidid><orcidid>https://orcid.org/0000-0001-5858-4027</orcidid><orcidid>https://orcid.org/0000-0003-1518-4845</orcidid><orcidid>https://orcid.org/0000-0001-5732-7061</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0002-7863
ispartof Journal of the American Chemical Society, 2020-08, Vol.142 (31), p.13582-13589
issn 0002-7863
1520-5126
language eng
recordid cdi_proquest_miscellaneous_2426181829
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects Bromides - chemistry
Crystallography, X-Ray
Luminescence
Manganese - chemistry
Models, Molecular
Molecular Structure
Photochemical Processes
Quantum Theory
title Design Principles for Enhancing Photoluminescence Quantum Yield in Hybrid Manganese Bromides
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T14%3A10%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20Principles%20for%20Enhancing%20Photoluminescence%20Quantum%20Yield%20in%20Hybrid%20Manganese%20Bromides&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Mao,%20Lingling&rft.date=2020-08-05&rft.volume=142&rft.issue=31&rft.spage=13582&rft.epage=13589&rft.pages=13582-13589&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/jacs.0c06039&rft_dat=%3Cproquest_cross%3E2426181829%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a362t-b608824d39d76e34cdf6979dd64375e93153d3e504de895c4c7ce6f8c0bf66da3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2426181829&rft_id=info:pmid/32693585&rfr_iscdi=true