Loading…
Bayesian estimation of diagnostic sensitivity and specificity of a qPCR and a bacteriological culture method for Piscirickettsia salmonis in farmed Atlantic salmon (Salmo salar L.) in Chile
Early detection of piscirickettsiosis is an important purpose of government‐ and industry‐based surveillance for the disease in Atlantic salmon farms in Chile. Real‐time qPCRs are currently used for surveillance because bacterial isolation is inadequately sensitive or rapid enough for routine use. S...
Saved in:
Published in: | Journal of fish diseases 2020-10, Vol.43 (10), p.1167-1175 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c2686-96a52bd24ed4210f59defb3b01daf6dfd55a572670df1a5dbe3b36ce98c7c53d3 |
---|---|
cites | cdi_FETCH-LOGICAL-c2686-96a52bd24ed4210f59defb3b01daf6dfd55a572670df1a5dbe3b36ce98c7c53d3 |
container_end_page | 1175 |
container_issue | 10 |
container_start_page | 1167 |
container_title | Journal of fish diseases |
container_volume | 43 |
creator | Laurin, Emilie Gardner, Ian A. Peña, Andrea Rozas‐Serri, Marco Gayosa, Jorge Neumann Heise, Joaquin Mardones, Fernando O. |
description | Early detection of piscirickettsiosis is an important purpose of government‐ and industry‐based surveillance for the disease in Atlantic salmon farms in Chile. Real‐time qPCRs are currently used for surveillance because bacterial isolation is inadequately sensitive or rapid enough for routine use. Since no perfect tests exist, we used Bayesian latent class models to estimate diagnostic sensitivity (DSe) and specificity (DSp) of qPCR and culture using separate two‐test, single‐population models for three farms (n = 148, 151, 44). Informative priors were used for DSp (culture (beta(999,1); qPCR (beta(98,2)), and flat priors (beta 1,1) for DSe and prevalence. Models were run for liver and kidney tissues combined and separately, based on the presence of selected gross‐pathological signs. Across all models, qPCR DSe was 5‐ to 30‐fold greater than for culture. Combined‐tissue qPCR median DSe was highest in Farm 3 (sampled during P. salmonis outbreak (DSe = 97.6%)) versus Farm 1 (DSe = 85.6%) or Farm 2 (DSe = 83.5%), both sampled before clinical disease. Median DSe of qPCR was similar for liver and kidney, but higher when gross‐pathological signs were evident at necropsy. High DSe and DSp and rapid turnaround‐time indicate that the qPCR is fit for surveillance programmes and diagnosis during an outbreak. Targeted testing of salmon with gross‐pathological signs can enhance DSe. |
doi_str_mv | 10.1111/jfd.13226 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2427522621</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2445684334</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2686-96a52bd24ed4210f59defb3b01daf6dfd55a572670df1a5dbe3b36ce98c7c53d3</originalsourceid><addsrcrecordid>eNp1kc1uEzEUhS1ERUNhwQsgS2zaxaT-GdvJsg0tUEWi4mc98tjXrcPMOLU9VHk43g1PUlgg4c2VfT-de30OQm8omdNyzjfOzilnTD5DM8qlqJiS9DmaEVqTSikljtHLlDaEUCWofIGOOVNUEkVn6Nel3kHyesCQsu919mHAwWHr9d0QypPBCYbks__p8w7rweK0BeOdN9O9kBo_3K6-7Dsat9pkiD504c4b3WEzdnmMgHvI98FiFyK-9cn46M0PyLkMxkl3fRh8wn7ATsceLL7InR72o_c9fPp1qtNNR7yen03o6t538AodOd0leP1UT9D366tvq4_V-vOHT6uLdWWYXMhqKbVgrWU12JpR4sTSgmt5S6jVTlpnhdBCMamIdVQL2wJvuTSwXBhlBLf8BJ0edLcxPIzFqaYvv4CurAlhTA2rmRLFf0YL-u4fdBPGOJTtClULuag5rwt1dqBMDClFcM02FvfjrqGkmTJtSqbNPtPCvn1SHNvizl_yT4gFOD8Aj8WS3f-Vmpvr9wfJ3xvUrkA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2445684334</pqid></control><display><type>article</type><title>Bayesian estimation of diagnostic sensitivity and specificity of a qPCR and a bacteriological culture method for Piscirickettsia salmonis in farmed Atlantic salmon (Salmo salar L.) in Chile</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Laurin, Emilie ; Gardner, Ian A. ; Peña, Andrea ; Rozas‐Serri, Marco ; Gayosa, Jorge ; Neumann Heise, Joaquin ; Mardones, Fernando O.</creator><creatorcontrib>Laurin, Emilie ; Gardner, Ian A. ; Peña, Andrea ; Rozas‐Serri, Marco ; Gayosa, Jorge ; Neumann Heise, Joaquin ; Mardones, Fernando O.</creatorcontrib><description>Early detection of piscirickettsiosis is an important purpose of government‐ and industry‐based surveillance for the disease in Atlantic salmon farms in Chile. Real‐time qPCRs are currently used for surveillance because bacterial isolation is inadequately sensitive or rapid enough for routine use. Since no perfect tests exist, we used Bayesian latent class models to estimate diagnostic sensitivity (DSe) and specificity (DSp) of qPCR and culture using separate two‐test, single‐population models for three farms (n = 148, 151, 44). Informative priors were used for DSp (culture (beta(999,1); qPCR (beta(98,2)), and flat priors (beta 1,1) for DSe and prevalence. Models were run for liver and kidney tissues combined and separately, based on the presence of selected gross‐pathological signs. Across all models, qPCR DSe was 5‐ to 30‐fold greater than for culture. Combined‐tissue qPCR median DSe was highest in Farm 3 (sampled during P. salmonis outbreak (DSe = 97.6%)) versus Farm 1 (DSe = 85.6%) or Farm 2 (DSe = 83.5%), both sampled before clinical disease. Median DSe of qPCR was similar for liver and kidney, but higher when gross‐pathological signs were evident at necropsy. High DSe and DSp and rapid turnaround‐time indicate that the qPCR is fit for surveillance programmes and diagnosis during an outbreak. Targeted testing of salmon with gross‐pathological signs can enhance DSe.</description><identifier>ISSN: 0140-7775</identifier><identifier>EISSN: 1365-2761</identifier><identifier>DOI: 10.1111/jfd.13226</identifier><identifier>PMID: 32716071</identifier><language>eng</language><publisher>England: Blackwell Publishing Ltd</publisher><subject>Animals ; Aquaculture ; Bacteriological Techniques ; Bayes Theorem ; Bayesian analysis ; Bayesian latent class model ; Chile ; Diagnostic systems ; Farms ; Fish Diseases - diagnosis ; Fish Diseases - microbiology ; Freshwater fishes ; Kidneys ; Latent Class Analysis ; Liver ; Marine fishes ; Mathematical models ; Necropsy ; Outbreaks ; Piscirickettsia - growth & development ; Piscirickettsia - isolation & purification ; Piscirickettsia salmonis ; Piscirickettsiaceae Infections - diagnosis ; Piscirickettsiaceae Infections - veterinary ; piscirickettsiosis ; Probability theory ; qPCR ; Real-Time Polymerase Chain Reaction - veterinary ; Salmo salar ; Salmo salar - microbiology ; Salmon ; Sensitivity ; Sensitivity and Specificity ; Specificity ; Surveillance ; Tissue ; Tissue culture</subject><ispartof>Journal of fish diseases, 2020-10, Vol.43 (10), p.1167-1175</ispartof><rights>2020 John Wiley & Sons Ltd</rights><rights>2020 John Wiley & Sons Ltd.</rights><rights>Copyright © 2020 John Wiley & Sons Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2686-96a52bd24ed4210f59defb3b01daf6dfd55a572670df1a5dbe3b36ce98c7c53d3</citedby><cites>FETCH-LOGICAL-c2686-96a52bd24ed4210f59defb3b01daf6dfd55a572670df1a5dbe3b36ce98c7c53d3</cites><orcidid>0000-0002-1838-1919 ; 0000-0002-1693-7178</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32716071$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Laurin, Emilie</creatorcontrib><creatorcontrib>Gardner, Ian A.</creatorcontrib><creatorcontrib>Peña, Andrea</creatorcontrib><creatorcontrib>Rozas‐Serri, Marco</creatorcontrib><creatorcontrib>Gayosa, Jorge</creatorcontrib><creatorcontrib>Neumann Heise, Joaquin</creatorcontrib><creatorcontrib>Mardones, Fernando O.</creatorcontrib><title>Bayesian estimation of diagnostic sensitivity and specificity of a qPCR and a bacteriological culture method for Piscirickettsia salmonis in farmed Atlantic salmon (Salmo salar L.) in Chile</title><title>Journal of fish diseases</title><addtitle>J Fish Dis</addtitle><description>Early detection of piscirickettsiosis is an important purpose of government‐ and industry‐based surveillance for the disease in Atlantic salmon farms in Chile. Real‐time qPCRs are currently used for surveillance because bacterial isolation is inadequately sensitive or rapid enough for routine use. Since no perfect tests exist, we used Bayesian latent class models to estimate diagnostic sensitivity (DSe) and specificity (DSp) of qPCR and culture using separate two‐test, single‐population models for three farms (n = 148, 151, 44). Informative priors were used for DSp (culture (beta(999,1); qPCR (beta(98,2)), and flat priors (beta 1,1) for DSe and prevalence. Models were run for liver and kidney tissues combined and separately, based on the presence of selected gross‐pathological signs. Across all models, qPCR DSe was 5‐ to 30‐fold greater than for culture. Combined‐tissue qPCR median DSe was highest in Farm 3 (sampled during P. salmonis outbreak (DSe = 97.6%)) versus Farm 1 (DSe = 85.6%) or Farm 2 (DSe = 83.5%), both sampled before clinical disease. Median DSe of qPCR was similar for liver and kidney, but higher when gross‐pathological signs were evident at necropsy. High DSe and DSp and rapid turnaround‐time indicate that the qPCR is fit for surveillance programmes and diagnosis during an outbreak. Targeted testing of salmon with gross‐pathological signs can enhance DSe.</description><subject>Animals</subject><subject>Aquaculture</subject><subject>Bacteriological Techniques</subject><subject>Bayes Theorem</subject><subject>Bayesian analysis</subject><subject>Bayesian latent class model</subject><subject>Chile</subject><subject>Diagnostic systems</subject><subject>Farms</subject><subject>Fish Diseases - diagnosis</subject><subject>Fish Diseases - microbiology</subject><subject>Freshwater fishes</subject><subject>Kidneys</subject><subject>Latent Class Analysis</subject><subject>Liver</subject><subject>Marine fishes</subject><subject>Mathematical models</subject><subject>Necropsy</subject><subject>Outbreaks</subject><subject>Piscirickettsia - growth & development</subject><subject>Piscirickettsia - isolation & purification</subject><subject>Piscirickettsia salmonis</subject><subject>Piscirickettsiaceae Infections - diagnosis</subject><subject>Piscirickettsiaceae Infections - veterinary</subject><subject>piscirickettsiosis</subject><subject>Probability theory</subject><subject>qPCR</subject><subject>Real-Time Polymerase Chain Reaction - veterinary</subject><subject>Salmo salar</subject><subject>Salmo salar - microbiology</subject><subject>Salmon</subject><subject>Sensitivity</subject><subject>Sensitivity and Specificity</subject><subject>Specificity</subject><subject>Surveillance</subject><subject>Tissue</subject><subject>Tissue culture</subject><issn>0140-7775</issn><issn>1365-2761</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kc1uEzEUhS1ERUNhwQsgS2zaxaT-GdvJsg0tUEWi4mc98tjXrcPMOLU9VHk43g1PUlgg4c2VfT-de30OQm8omdNyzjfOzilnTD5DM8qlqJiS9DmaEVqTSikljtHLlDaEUCWofIGOOVNUEkVn6Nel3kHyesCQsu919mHAwWHr9d0QypPBCYbks__p8w7rweK0BeOdN9O9kBo_3K6-7Dsat9pkiD504c4b3WEzdnmMgHvI98FiFyK-9cn46M0PyLkMxkl3fRh8wn7ATsceLL7InR72o_c9fPp1qtNNR7yen03o6t538AodOd0leP1UT9D366tvq4_V-vOHT6uLdWWYXMhqKbVgrWU12JpR4sTSgmt5S6jVTlpnhdBCMamIdVQL2wJvuTSwXBhlBLf8BJ0edLcxPIzFqaYvv4CurAlhTA2rmRLFf0YL-u4fdBPGOJTtClULuag5rwt1dqBMDClFcM02FvfjrqGkmTJtSqbNPtPCvn1SHNvizl_yT4gFOD8Aj8WS3f-Vmpvr9wfJ3xvUrkA</recordid><startdate>202010</startdate><enddate>202010</enddate><creator>Laurin, Emilie</creator><creator>Gardner, Ian A.</creator><creator>Peña, Andrea</creator><creator>Rozas‐Serri, Marco</creator><creator>Gayosa, Jorge</creator><creator>Neumann Heise, Joaquin</creator><creator>Mardones, Fernando O.</creator><general>Blackwell Publishing Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7TN</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H94</scope><scope>H95</scope><scope>H98</scope><scope>H99</scope><scope>L.F</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1838-1919</orcidid><orcidid>https://orcid.org/0000-0002-1693-7178</orcidid></search><sort><creationdate>202010</creationdate><title>Bayesian estimation of diagnostic sensitivity and specificity of a qPCR and a bacteriological culture method for Piscirickettsia salmonis in farmed Atlantic salmon (Salmo salar L.) in Chile</title><author>Laurin, Emilie ; Gardner, Ian A. ; Peña, Andrea ; Rozas‐Serri, Marco ; Gayosa, Jorge ; Neumann Heise, Joaquin ; Mardones, Fernando O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2686-96a52bd24ed4210f59defb3b01daf6dfd55a572670df1a5dbe3b36ce98c7c53d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Animals</topic><topic>Aquaculture</topic><topic>Bacteriological Techniques</topic><topic>Bayes Theorem</topic><topic>Bayesian analysis</topic><topic>Bayesian latent class model</topic><topic>Chile</topic><topic>Diagnostic systems</topic><topic>Farms</topic><topic>Fish Diseases - diagnosis</topic><topic>Fish Diseases - microbiology</topic><topic>Freshwater fishes</topic><topic>Kidneys</topic><topic>Latent Class Analysis</topic><topic>Liver</topic><topic>Marine fishes</topic><topic>Mathematical models</topic><topic>Necropsy</topic><topic>Outbreaks</topic><topic>Piscirickettsia - growth & development</topic><topic>Piscirickettsia - isolation & purification</topic><topic>Piscirickettsia salmonis</topic><topic>Piscirickettsiaceae Infections - diagnosis</topic><topic>Piscirickettsiaceae Infections - veterinary</topic><topic>piscirickettsiosis</topic><topic>Probability theory</topic><topic>qPCR</topic><topic>Real-Time Polymerase Chain Reaction - veterinary</topic><topic>Salmo salar</topic><topic>Salmo salar - microbiology</topic><topic>Salmon</topic><topic>Sensitivity</topic><topic>Sensitivity and Specificity</topic><topic>Specificity</topic><topic>Surveillance</topic><topic>Tissue</topic><topic>Tissue culture</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Laurin, Emilie</creatorcontrib><creatorcontrib>Gardner, Ian A.</creatorcontrib><creatorcontrib>Peña, Andrea</creatorcontrib><creatorcontrib>Rozas‐Serri, Marco</creatorcontrib><creatorcontrib>Gayosa, Jorge</creatorcontrib><creatorcontrib>Neumann Heise, Joaquin</creatorcontrib><creatorcontrib>Mardones, Fernando O.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Oceanic Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Aquaculture Abstracts</collection><collection>ASFA: Marine Biotechnology Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Marine Biotechnology Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of fish diseases</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Laurin, Emilie</au><au>Gardner, Ian A.</au><au>Peña, Andrea</au><au>Rozas‐Serri, Marco</au><au>Gayosa, Jorge</au><au>Neumann Heise, Joaquin</au><au>Mardones, Fernando O.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bayesian estimation of diagnostic sensitivity and specificity of a qPCR and a bacteriological culture method for Piscirickettsia salmonis in farmed Atlantic salmon (Salmo salar L.) in Chile</atitle><jtitle>Journal of fish diseases</jtitle><addtitle>J Fish Dis</addtitle><date>2020-10</date><risdate>2020</risdate><volume>43</volume><issue>10</issue><spage>1167</spage><epage>1175</epage><pages>1167-1175</pages><issn>0140-7775</issn><eissn>1365-2761</eissn><abstract>Early detection of piscirickettsiosis is an important purpose of government‐ and industry‐based surveillance for the disease in Atlantic salmon farms in Chile. Real‐time qPCRs are currently used for surveillance because bacterial isolation is inadequately sensitive or rapid enough for routine use. Since no perfect tests exist, we used Bayesian latent class models to estimate diagnostic sensitivity (DSe) and specificity (DSp) of qPCR and culture using separate two‐test, single‐population models for three farms (n = 148, 151, 44). Informative priors were used for DSp (culture (beta(999,1); qPCR (beta(98,2)), and flat priors (beta 1,1) for DSe and prevalence. Models were run for liver and kidney tissues combined and separately, based on the presence of selected gross‐pathological signs. Across all models, qPCR DSe was 5‐ to 30‐fold greater than for culture. Combined‐tissue qPCR median DSe was highest in Farm 3 (sampled during P. salmonis outbreak (DSe = 97.6%)) versus Farm 1 (DSe = 85.6%) or Farm 2 (DSe = 83.5%), both sampled before clinical disease. Median DSe of qPCR was similar for liver and kidney, but higher when gross‐pathological signs were evident at necropsy. High DSe and DSp and rapid turnaround‐time indicate that the qPCR is fit for surveillance programmes and diagnosis during an outbreak. Targeted testing of salmon with gross‐pathological signs can enhance DSe.</abstract><cop>England</cop><pub>Blackwell Publishing Ltd</pub><pmid>32716071</pmid><doi>10.1111/jfd.13226</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-1838-1919</orcidid><orcidid>https://orcid.org/0000-0002-1693-7178</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0140-7775 |
ispartof | Journal of fish diseases, 2020-10, Vol.43 (10), p.1167-1175 |
issn | 0140-7775 1365-2761 |
language | eng |
recordid | cdi_proquest_miscellaneous_2427522621 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Animals Aquaculture Bacteriological Techniques Bayes Theorem Bayesian analysis Bayesian latent class model Chile Diagnostic systems Farms Fish Diseases - diagnosis Fish Diseases - microbiology Freshwater fishes Kidneys Latent Class Analysis Liver Marine fishes Mathematical models Necropsy Outbreaks Piscirickettsia - growth & development Piscirickettsia - isolation & purification Piscirickettsia salmonis Piscirickettsiaceae Infections - diagnosis Piscirickettsiaceae Infections - veterinary piscirickettsiosis Probability theory qPCR Real-Time Polymerase Chain Reaction - veterinary Salmo salar Salmo salar - microbiology Salmon Sensitivity Sensitivity and Specificity Specificity Surveillance Tissue Tissue culture |
title | Bayesian estimation of diagnostic sensitivity and specificity of a qPCR and a bacteriological culture method for Piscirickettsia salmonis in farmed Atlantic salmon (Salmo salar L.) in Chile |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T08%3A16%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bayesian%20estimation%20of%20diagnostic%20sensitivity%20and%20specificity%20of%20a%20qPCR%20and%20a%20bacteriological%20culture%20method%20for%20Piscirickettsia%20salmonis%20in%20farmed%20Atlantic%20salmon%20(Salmo%20salar%20L.)%20in%20Chile&rft.jtitle=Journal%20of%20fish%20diseases&rft.au=Laurin,%20Emilie&rft.date=2020-10&rft.volume=43&rft.issue=10&rft.spage=1167&rft.epage=1175&rft.pages=1167-1175&rft.issn=0140-7775&rft.eissn=1365-2761&rft_id=info:doi/10.1111/jfd.13226&rft_dat=%3Cproquest_cross%3E2445684334%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2686-96a52bd24ed4210f59defb3b01daf6dfd55a572670df1a5dbe3b36ce98c7c53d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2445684334&rft_id=info:pmid/32716071&rfr_iscdi=true |