Loading…

Bayesian estimation of diagnostic sensitivity and specificity of a qPCR and a bacteriological culture method for Piscirickettsia salmonis in farmed Atlantic salmon (Salmo salar L.) in Chile

Early detection of piscirickettsiosis is an important purpose of government‐ and industry‐based surveillance for the disease in Atlantic salmon farms in Chile. Real‐time qPCRs are currently used for surveillance because bacterial isolation is inadequately sensitive or rapid enough for routine use. S...

Full description

Saved in:
Bibliographic Details
Published in:Journal of fish diseases 2020-10, Vol.43 (10), p.1167-1175
Main Authors: Laurin, Emilie, Gardner, Ian A., Peña, Andrea, Rozas‐Serri, Marco, Gayosa, Jorge, Neumann Heise, Joaquin, Mardones, Fernando O.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c2686-96a52bd24ed4210f59defb3b01daf6dfd55a572670df1a5dbe3b36ce98c7c53d3
cites cdi_FETCH-LOGICAL-c2686-96a52bd24ed4210f59defb3b01daf6dfd55a572670df1a5dbe3b36ce98c7c53d3
container_end_page 1175
container_issue 10
container_start_page 1167
container_title Journal of fish diseases
container_volume 43
creator Laurin, Emilie
Gardner, Ian A.
Peña, Andrea
Rozas‐Serri, Marco
Gayosa, Jorge
Neumann Heise, Joaquin
Mardones, Fernando O.
description Early detection of piscirickettsiosis is an important purpose of government‐ and industry‐based surveillance for the disease in Atlantic salmon farms in Chile. Real‐time qPCRs are currently used for surveillance because bacterial isolation is inadequately sensitive or rapid enough for routine use. Since no perfect tests exist, we used Bayesian latent class models to estimate diagnostic sensitivity (DSe) and specificity (DSp) of qPCR and culture using separate two‐test, single‐population models for three farms (n = 148, 151, 44). Informative priors were used for DSp (culture (beta(999,1); qPCR (beta(98,2)), and flat priors (beta 1,1) for DSe and prevalence. Models were run for liver and kidney tissues combined and separately, based on the presence of selected gross‐pathological signs. Across all models, qPCR DSe was 5‐ to 30‐fold greater than for culture. Combined‐tissue qPCR median DSe was highest in Farm 3 (sampled during P. salmonis outbreak (DSe = 97.6%)) versus Farm 1 (DSe = 85.6%) or Farm 2 (DSe = 83.5%), both sampled before clinical disease. Median DSe of qPCR was similar for liver and kidney, but higher when gross‐pathological signs were evident at necropsy. High DSe and DSp and rapid turnaround‐time indicate that the qPCR is fit for surveillance programmes and diagnosis during an outbreak. Targeted testing of salmon with gross‐pathological signs can enhance DSe.
doi_str_mv 10.1111/jfd.13226
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2427522621</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2445684334</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2686-96a52bd24ed4210f59defb3b01daf6dfd55a572670df1a5dbe3b36ce98c7c53d3</originalsourceid><addsrcrecordid>eNp1kc1uEzEUhS1ERUNhwQsgS2zaxaT-GdvJsg0tUEWi4mc98tjXrcPMOLU9VHk43g1PUlgg4c2VfT-de30OQm8omdNyzjfOzilnTD5DM8qlqJiS9DmaEVqTSikljtHLlDaEUCWofIGOOVNUEkVn6Nel3kHyesCQsu919mHAwWHr9d0QypPBCYbks__p8w7rweK0BeOdN9O9kBo_3K6-7Dsat9pkiD504c4b3WEzdnmMgHvI98FiFyK-9cn46M0PyLkMxkl3fRh8wn7ATsceLL7InR72o_c9fPp1qtNNR7yen03o6t538AodOd0leP1UT9D366tvq4_V-vOHT6uLdWWYXMhqKbVgrWU12JpR4sTSgmt5S6jVTlpnhdBCMamIdVQL2wJvuTSwXBhlBLf8BJ0edLcxPIzFqaYvv4CurAlhTA2rmRLFf0YL-u4fdBPGOJTtClULuag5rwt1dqBMDClFcM02FvfjrqGkmTJtSqbNPtPCvn1SHNvizl_yT4gFOD8Aj8WS3f-Vmpvr9wfJ3xvUrkA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2445684334</pqid></control><display><type>article</type><title>Bayesian estimation of diagnostic sensitivity and specificity of a qPCR and a bacteriological culture method for Piscirickettsia salmonis in farmed Atlantic salmon (Salmo salar L.) in Chile</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Laurin, Emilie ; Gardner, Ian A. ; Peña, Andrea ; Rozas‐Serri, Marco ; Gayosa, Jorge ; Neumann Heise, Joaquin ; Mardones, Fernando O.</creator><creatorcontrib>Laurin, Emilie ; Gardner, Ian A. ; Peña, Andrea ; Rozas‐Serri, Marco ; Gayosa, Jorge ; Neumann Heise, Joaquin ; Mardones, Fernando O.</creatorcontrib><description>Early detection of piscirickettsiosis is an important purpose of government‐ and industry‐based surveillance for the disease in Atlantic salmon farms in Chile. Real‐time qPCRs are currently used for surveillance because bacterial isolation is inadequately sensitive or rapid enough for routine use. Since no perfect tests exist, we used Bayesian latent class models to estimate diagnostic sensitivity (DSe) and specificity (DSp) of qPCR and culture using separate two‐test, single‐population models for three farms (n = 148, 151, 44). Informative priors were used for DSp (culture (beta(999,1); qPCR (beta(98,2)), and flat priors (beta 1,1) for DSe and prevalence. Models were run for liver and kidney tissues combined and separately, based on the presence of selected gross‐pathological signs. Across all models, qPCR DSe was 5‐ to 30‐fold greater than for culture. Combined‐tissue qPCR median DSe was highest in Farm 3 (sampled during P. salmonis outbreak (DSe = 97.6%)) versus Farm 1 (DSe = 85.6%) or Farm 2 (DSe = 83.5%), both sampled before clinical disease. Median DSe of qPCR was similar for liver and kidney, but higher when gross‐pathological signs were evident at necropsy. High DSe and DSp and rapid turnaround‐time indicate that the qPCR is fit for surveillance programmes and diagnosis during an outbreak. Targeted testing of salmon with gross‐pathological signs can enhance DSe.</description><identifier>ISSN: 0140-7775</identifier><identifier>EISSN: 1365-2761</identifier><identifier>DOI: 10.1111/jfd.13226</identifier><identifier>PMID: 32716071</identifier><language>eng</language><publisher>England: Blackwell Publishing Ltd</publisher><subject>Animals ; Aquaculture ; Bacteriological Techniques ; Bayes Theorem ; Bayesian analysis ; Bayesian latent class model ; Chile ; Diagnostic systems ; Farms ; Fish Diseases - diagnosis ; Fish Diseases - microbiology ; Freshwater fishes ; Kidneys ; Latent Class Analysis ; Liver ; Marine fishes ; Mathematical models ; Necropsy ; Outbreaks ; Piscirickettsia - growth &amp; development ; Piscirickettsia - isolation &amp; purification ; Piscirickettsia salmonis ; Piscirickettsiaceae Infections - diagnosis ; Piscirickettsiaceae Infections - veterinary ; piscirickettsiosis ; Probability theory ; qPCR ; Real-Time Polymerase Chain Reaction - veterinary ; Salmo salar ; Salmo salar - microbiology ; Salmon ; Sensitivity ; Sensitivity and Specificity ; Specificity ; Surveillance ; Tissue ; Tissue culture</subject><ispartof>Journal of fish diseases, 2020-10, Vol.43 (10), p.1167-1175</ispartof><rights>2020 John Wiley &amp; Sons Ltd</rights><rights>2020 John Wiley &amp; Sons Ltd.</rights><rights>Copyright © 2020 John Wiley &amp; Sons Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2686-96a52bd24ed4210f59defb3b01daf6dfd55a572670df1a5dbe3b36ce98c7c53d3</citedby><cites>FETCH-LOGICAL-c2686-96a52bd24ed4210f59defb3b01daf6dfd55a572670df1a5dbe3b36ce98c7c53d3</cites><orcidid>0000-0002-1838-1919 ; 0000-0002-1693-7178</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32716071$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Laurin, Emilie</creatorcontrib><creatorcontrib>Gardner, Ian A.</creatorcontrib><creatorcontrib>Peña, Andrea</creatorcontrib><creatorcontrib>Rozas‐Serri, Marco</creatorcontrib><creatorcontrib>Gayosa, Jorge</creatorcontrib><creatorcontrib>Neumann Heise, Joaquin</creatorcontrib><creatorcontrib>Mardones, Fernando O.</creatorcontrib><title>Bayesian estimation of diagnostic sensitivity and specificity of a qPCR and a bacteriological culture method for Piscirickettsia salmonis in farmed Atlantic salmon (Salmo salar L.) in Chile</title><title>Journal of fish diseases</title><addtitle>J Fish Dis</addtitle><description>Early detection of piscirickettsiosis is an important purpose of government‐ and industry‐based surveillance for the disease in Atlantic salmon farms in Chile. Real‐time qPCRs are currently used for surveillance because bacterial isolation is inadequately sensitive or rapid enough for routine use. Since no perfect tests exist, we used Bayesian latent class models to estimate diagnostic sensitivity (DSe) and specificity (DSp) of qPCR and culture using separate two‐test, single‐population models for three farms (n = 148, 151, 44). Informative priors were used for DSp (culture (beta(999,1); qPCR (beta(98,2)), and flat priors (beta 1,1) for DSe and prevalence. Models were run for liver and kidney tissues combined and separately, based on the presence of selected gross‐pathological signs. Across all models, qPCR DSe was 5‐ to 30‐fold greater than for culture. Combined‐tissue qPCR median DSe was highest in Farm 3 (sampled during P. salmonis outbreak (DSe = 97.6%)) versus Farm 1 (DSe = 85.6%) or Farm 2 (DSe = 83.5%), both sampled before clinical disease. Median DSe of qPCR was similar for liver and kidney, but higher when gross‐pathological signs were evident at necropsy. High DSe and DSp and rapid turnaround‐time indicate that the qPCR is fit for surveillance programmes and diagnosis during an outbreak. Targeted testing of salmon with gross‐pathological signs can enhance DSe.</description><subject>Animals</subject><subject>Aquaculture</subject><subject>Bacteriological Techniques</subject><subject>Bayes Theorem</subject><subject>Bayesian analysis</subject><subject>Bayesian latent class model</subject><subject>Chile</subject><subject>Diagnostic systems</subject><subject>Farms</subject><subject>Fish Diseases - diagnosis</subject><subject>Fish Diseases - microbiology</subject><subject>Freshwater fishes</subject><subject>Kidneys</subject><subject>Latent Class Analysis</subject><subject>Liver</subject><subject>Marine fishes</subject><subject>Mathematical models</subject><subject>Necropsy</subject><subject>Outbreaks</subject><subject>Piscirickettsia - growth &amp; development</subject><subject>Piscirickettsia - isolation &amp; purification</subject><subject>Piscirickettsia salmonis</subject><subject>Piscirickettsiaceae Infections - diagnosis</subject><subject>Piscirickettsiaceae Infections - veterinary</subject><subject>piscirickettsiosis</subject><subject>Probability theory</subject><subject>qPCR</subject><subject>Real-Time Polymerase Chain Reaction - veterinary</subject><subject>Salmo salar</subject><subject>Salmo salar - microbiology</subject><subject>Salmon</subject><subject>Sensitivity</subject><subject>Sensitivity and Specificity</subject><subject>Specificity</subject><subject>Surveillance</subject><subject>Tissue</subject><subject>Tissue culture</subject><issn>0140-7775</issn><issn>1365-2761</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kc1uEzEUhS1ERUNhwQsgS2zaxaT-GdvJsg0tUEWi4mc98tjXrcPMOLU9VHk43g1PUlgg4c2VfT-de30OQm8omdNyzjfOzilnTD5DM8qlqJiS9DmaEVqTSikljtHLlDaEUCWofIGOOVNUEkVn6Nel3kHyesCQsu919mHAwWHr9d0QypPBCYbks__p8w7rweK0BeOdN9O9kBo_3K6-7Dsat9pkiD504c4b3WEzdnmMgHvI98FiFyK-9cn46M0PyLkMxkl3fRh8wn7ATsceLL7InR72o_c9fPp1qtNNR7yen03o6t538AodOd0leP1UT9D366tvq4_V-vOHT6uLdWWYXMhqKbVgrWU12JpR4sTSgmt5S6jVTlpnhdBCMamIdVQL2wJvuTSwXBhlBLf8BJ0edLcxPIzFqaYvv4CurAlhTA2rmRLFf0YL-u4fdBPGOJTtClULuag5rwt1dqBMDClFcM02FvfjrqGkmTJtSqbNPtPCvn1SHNvizl_yT4gFOD8Aj8WS3f-Vmpvr9wfJ3xvUrkA</recordid><startdate>202010</startdate><enddate>202010</enddate><creator>Laurin, Emilie</creator><creator>Gardner, Ian A.</creator><creator>Peña, Andrea</creator><creator>Rozas‐Serri, Marco</creator><creator>Gayosa, Jorge</creator><creator>Neumann Heise, Joaquin</creator><creator>Mardones, Fernando O.</creator><general>Blackwell Publishing Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7TN</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H94</scope><scope>H95</scope><scope>H98</scope><scope>H99</scope><scope>L.F</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1838-1919</orcidid><orcidid>https://orcid.org/0000-0002-1693-7178</orcidid></search><sort><creationdate>202010</creationdate><title>Bayesian estimation of diagnostic sensitivity and specificity of a qPCR and a bacteriological culture method for Piscirickettsia salmonis in farmed Atlantic salmon (Salmo salar L.) in Chile</title><author>Laurin, Emilie ; Gardner, Ian A. ; Peña, Andrea ; Rozas‐Serri, Marco ; Gayosa, Jorge ; Neumann Heise, Joaquin ; Mardones, Fernando O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2686-96a52bd24ed4210f59defb3b01daf6dfd55a572670df1a5dbe3b36ce98c7c53d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Animals</topic><topic>Aquaculture</topic><topic>Bacteriological Techniques</topic><topic>Bayes Theorem</topic><topic>Bayesian analysis</topic><topic>Bayesian latent class model</topic><topic>Chile</topic><topic>Diagnostic systems</topic><topic>Farms</topic><topic>Fish Diseases - diagnosis</topic><topic>Fish Diseases - microbiology</topic><topic>Freshwater fishes</topic><topic>Kidneys</topic><topic>Latent Class Analysis</topic><topic>Liver</topic><topic>Marine fishes</topic><topic>Mathematical models</topic><topic>Necropsy</topic><topic>Outbreaks</topic><topic>Piscirickettsia - growth &amp; development</topic><topic>Piscirickettsia - isolation &amp; purification</topic><topic>Piscirickettsia salmonis</topic><topic>Piscirickettsiaceae Infections - diagnosis</topic><topic>Piscirickettsiaceae Infections - veterinary</topic><topic>piscirickettsiosis</topic><topic>Probability theory</topic><topic>qPCR</topic><topic>Real-Time Polymerase Chain Reaction - veterinary</topic><topic>Salmo salar</topic><topic>Salmo salar - microbiology</topic><topic>Salmon</topic><topic>Sensitivity</topic><topic>Sensitivity and Specificity</topic><topic>Specificity</topic><topic>Surveillance</topic><topic>Tissue</topic><topic>Tissue culture</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Laurin, Emilie</creatorcontrib><creatorcontrib>Gardner, Ian A.</creatorcontrib><creatorcontrib>Peña, Andrea</creatorcontrib><creatorcontrib>Rozas‐Serri, Marco</creatorcontrib><creatorcontrib>Gayosa, Jorge</creatorcontrib><creatorcontrib>Neumann Heise, Joaquin</creatorcontrib><creatorcontrib>Mardones, Fernando O.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Oceanic Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Aquaculture Abstracts</collection><collection>ASFA: Marine Biotechnology Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Marine Biotechnology Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of fish diseases</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Laurin, Emilie</au><au>Gardner, Ian A.</au><au>Peña, Andrea</au><au>Rozas‐Serri, Marco</au><au>Gayosa, Jorge</au><au>Neumann Heise, Joaquin</au><au>Mardones, Fernando O.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bayesian estimation of diagnostic sensitivity and specificity of a qPCR and a bacteriological culture method for Piscirickettsia salmonis in farmed Atlantic salmon (Salmo salar L.) in Chile</atitle><jtitle>Journal of fish diseases</jtitle><addtitle>J Fish Dis</addtitle><date>2020-10</date><risdate>2020</risdate><volume>43</volume><issue>10</issue><spage>1167</spage><epage>1175</epage><pages>1167-1175</pages><issn>0140-7775</issn><eissn>1365-2761</eissn><abstract>Early detection of piscirickettsiosis is an important purpose of government‐ and industry‐based surveillance for the disease in Atlantic salmon farms in Chile. Real‐time qPCRs are currently used for surveillance because bacterial isolation is inadequately sensitive or rapid enough for routine use. Since no perfect tests exist, we used Bayesian latent class models to estimate diagnostic sensitivity (DSe) and specificity (DSp) of qPCR and culture using separate two‐test, single‐population models for three farms (n = 148, 151, 44). Informative priors were used for DSp (culture (beta(999,1); qPCR (beta(98,2)), and flat priors (beta 1,1) for DSe and prevalence. Models were run for liver and kidney tissues combined and separately, based on the presence of selected gross‐pathological signs. Across all models, qPCR DSe was 5‐ to 30‐fold greater than for culture. Combined‐tissue qPCR median DSe was highest in Farm 3 (sampled during P. salmonis outbreak (DSe = 97.6%)) versus Farm 1 (DSe = 85.6%) or Farm 2 (DSe = 83.5%), both sampled before clinical disease. Median DSe of qPCR was similar for liver and kidney, but higher when gross‐pathological signs were evident at necropsy. High DSe and DSp and rapid turnaround‐time indicate that the qPCR is fit for surveillance programmes and diagnosis during an outbreak. Targeted testing of salmon with gross‐pathological signs can enhance DSe.</abstract><cop>England</cop><pub>Blackwell Publishing Ltd</pub><pmid>32716071</pmid><doi>10.1111/jfd.13226</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-1838-1919</orcidid><orcidid>https://orcid.org/0000-0002-1693-7178</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0140-7775
ispartof Journal of fish diseases, 2020-10, Vol.43 (10), p.1167-1175
issn 0140-7775
1365-2761
language eng
recordid cdi_proquest_miscellaneous_2427522621
source Wiley-Blackwell Read & Publish Collection
subjects Animals
Aquaculture
Bacteriological Techniques
Bayes Theorem
Bayesian analysis
Bayesian latent class model
Chile
Diagnostic systems
Farms
Fish Diseases - diagnosis
Fish Diseases - microbiology
Freshwater fishes
Kidneys
Latent Class Analysis
Liver
Marine fishes
Mathematical models
Necropsy
Outbreaks
Piscirickettsia - growth & development
Piscirickettsia - isolation & purification
Piscirickettsia salmonis
Piscirickettsiaceae Infections - diagnosis
Piscirickettsiaceae Infections - veterinary
piscirickettsiosis
Probability theory
qPCR
Real-Time Polymerase Chain Reaction - veterinary
Salmo salar
Salmo salar - microbiology
Salmon
Sensitivity
Sensitivity and Specificity
Specificity
Surveillance
Tissue
Tissue culture
title Bayesian estimation of diagnostic sensitivity and specificity of a qPCR and a bacteriological culture method for Piscirickettsia salmonis in farmed Atlantic salmon (Salmo salar L.) in Chile
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T08%3A16%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bayesian%20estimation%20of%20diagnostic%20sensitivity%20and%20specificity%20of%20a%20qPCR%20and%20a%20bacteriological%20culture%20method%20for%20Piscirickettsia%20salmonis%20in%20farmed%20Atlantic%20salmon%20(Salmo%20salar%20L.)%20in%20Chile&rft.jtitle=Journal%20of%20fish%20diseases&rft.au=Laurin,%20Emilie&rft.date=2020-10&rft.volume=43&rft.issue=10&rft.spage=1167&rft.epage=1175&rft.pages=1167-1175&rft.issn=0140-7775&rft.eissn=1365-2761&rft_id=info:doi/10.1111/jfd.13226&rft_dat=%3Cproquest_cross%3E2445684334%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2686-96a52bd24ed4210f59defb3b01daf6dfd55a572670df1a5dbe3b36ce98c7c53d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2445684334&rft_id=info:pmid/32716071&rfr_iscdi=true