Loading…

Receptors involved in dexketoprofen analgesia in murine visceral pain

Various animal models, especially rodents, are used to study pain, due to the difficulty of studying it in humans. Many drugs that produce analgesia have been studied and there is evidence among which NSAIDs deserve to be highlighted. Dexketoprofen (DEX) provides a broad antinociceptive profile in d...

Full description

Saved in:
Bibliographic Details
Published in:Journal of biosciences 2020-12, Vol.45 (1), Article 94
Main Authors: Noriega, V, Sierralta, F, Poblete, P, Aranda, N, Sotomayor-Zárate, R, Prieto, J C, Miranda, H F
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Various animal models, especially rodents, are used to study pain, due to the difficulty of studying it in humans. Many drugs that produce analgesia have been studied and there is evidence among which NSAIDs deserve to be highlighted. Dexketoprofen (DEX) provides a broad antinociceptive profile in different types of pain; therefore, this study was designed to evaluate the profile of antinociceptive potency in mice. Analgesic activity was evaluated using the acetic acid abdominal constriction test (writhing test), a chemical model of visceral pain. Dose-response curves for i.p. DEX administration (1, 3, 10, 30 and 100 mg/kg), using at least six mice in each of at least five doses, was obtained before and 30 min after pre-treatment with different pharmacological agents. Pretreatment of the mice with opioid receptor antagonists was not effective; however, the serotonin receptor antagonist and nitric oxide synthase inhibitor produce a significant increase in DEX-induced antinociception. The data from the present study shows that DEX produces antinociception in the chemical twisting test of mice, which is explained with difficulty by the simple inhibition of COX. This effect appears to be mediated by other mechanisms in which the contribution of the NO and 5-HT pathways has an important effect on DEX-induced antinociception.
ISSN:0250-5991
0973-7138
DOI:10.1007/s12038-020-00064-z