Loading…
Post‐hoc physiological waveform extraction from motion estimation in simultaneous multislice (SMS) functional MRI using separate stack processing
Purpose Motion estimation is an essential step in functional MRI (fMRI) preprocessing. Usually, fMRI processing software packages (eg, FSL and AFNI) automatically estimate motion parameters in order to counteract the effects of motion. However, the time courses of the motion estimation for fMRI data...
Saved in:
Published in: | Magnetic resonance in medicine 2021-01, Vol.85 (1), p.309-315 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3888-f13379539c407f62c202e3574ba50ffb49aeedb155a05623ad6fbd4a783a6e073 |
---|---|
cites | cdi_FETCH-LOGICAL-c3888-f13379539c407f62c202e3574ba50ffb49aeedb155a05623ad6fbd4a783a6e073 |
container_end_page | 315 |
container_issue | 1 |
container_start_page | 309 |
container_title | Magnetic resonance in medicine |
container_volume | 85 |
creator | Hocke, Lia M. Frederick, Blaise B. |
description | Purpose
Motion estimation is an essential step in functional MRI (fMRI) preprocessing. Usually, fMRI processing software packages (eg, FSL and AFNI) automatically estimate motion parameters in order to counteract the effects of motion. However, the time courses of the motion estimation for fMRI data also contain information about physiological processes. Here, we show that respiration and cardiac signals can be extracted from motion estimation at significantly higher bandwidth than is possible with current methods.
Method
To detect motion at high effective temporal resolution (HighRes), the motion parameters of stacks of simultaneously acquired slices were estimated separately, then combined. This method was validated by extracting physiological motion signals from resting state fMRI (rsfMRI) data (Enhanced Nathan Kline Institute—Rockland Sample) and comparing them to respiration belt and pulse oximeter signals.
Results
HighRes motion time‐courses with an effective sampling rate of 15.5 and 11.4 Hz were extracted from repetition time (TR) = 0.645 and 1.4 s data, respectively. Respiration waveforms were extracted with significantly higher accuracy than the original motion parameters. Even cardiac waveforms could be extracted, despite the fact that the sampling time or TR values were too long to sample cardiac frequencies.
Conclusion
HighRes motion traces provide insight into the subjects’ motion at higher frequencies than can be estimated using standard techniques. In its simplest form, this technique can recover accurate respiration signals and may reveal additional complexity in brain motion. |
doi_str_mv | 10.1002/mrm.28418 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2428066150</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2428066150</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3888-f13379539c407f62c202e3574ba50ffb49aeedb155a05623ad6fbd4a783a6e073</originalsourceid><addsrcrecordid>eNp1kc1u1DAUhS0EokPLghdAlti0i7TXf_lZoopCpY5AbVlHjue6dYnjwU5oZ8cjIPGGPAmeSWGBxMpH8qfPOj6EvGJwzAD4iY_-mNeS1U_IginOC64a-ZQsoJJQCNbIPfIipTsAaJpKPid7glcchJAL8vNTSOOv7z9ug6Hr201yoQ83zuie3utvaEP0FB_GqM3owkBtDJ76sMuYRuf1LrqBJuenftQDhinRbXSpdwbp4dXy6ojaadgJsnZ5eU6n5IYbmnCtox6RplGbL3Qdg8G0vTkgz6zuE758PPfJ57N316cfiouP789P314URtR1XVgmRNUo0RgJlS254cBRqEp2WoG1nWw04qpjSmlQJRd6VdpuJXVVC10iVGKfHM7e_PTXKfdpvUsG-36u0XLJayhLpiCjb_5B78IUc58tpRgDwYXI1NFMmRhSimjbdcx_FDctg3a7VJuXandLZfb1o3HqPK7-kn-mycDJDNy7Hjf_N7XLy-Ws_A0f86DQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2451103233</pqid></control><display><type>article</type><title>Post‐hoc physiological waveform extraction from motion estimation in simultaneous multislice (SMS) functional MRI using separate stack processing</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Hocke, Lia M. ; Frederick, Blaise B.</creator><creatorcontrib>Hocke, Lia M. ; Frederick, Blaise B.</creatorcontrib><description>Purpose
Motion estimation is an essential step in functional MRI (fMRI) preprocessing. Usually, fMRI processing software packages (eg, FSL and AFNI) automatically estimate motion parameters in order to counteract the effects of motion. However, the time courses of the motion estimation for fMRI data also contain information about physiological processes. Here, we show that respiration and cardiac signals can be extracted from motion estimation at significantly higher bandwidth than is possible with current methods.
Method
To detect motion at high effective temporal resolution (HighRes), the motion parameters of stacks of simultaneously acquired slices were estimated separately, then combined. This method was validated by extracting physiological motion signals from resting state fMRI (rsfMRI) data (Enhanced Nathan Kline Institute—Rockland Sample) and comparing them to respiration belt and pulse oximeter signals.
Results
HighRes motion time‐courses with an effective sampling rate of 15.5 and 11.4 Hz were extracted from repetition time (TR) = 0.645 and 1.4 s data, respectively. Respiration waveforms were extracted with significantly higher accuracy than the original motion parameters. Even cardiac waveforms could be extracted, despite the fact that the sampling time or TR values were too long to sample cardiac frequencies.
Conclusion
HighRes motion traces provide insight into the subjects’ motion at higher frequencies than can be estimated using standard techniques. In its simplest form, this technique can recover accurate respiration signals and may reveal additional complexity in brain motion.</description><identifier>ISSN: 0740-3194</identifier><identifier>EISSN: 1522-2594</identifier><identifier>DOI: 10.1002/mrm.28418</identifier><identifier>PMID: 32720334</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>Brain - diagnostic imaging ; Brain Mapping ; cardiac ; effective sample rate ; Functional magnetic resonance imaging ; Heart ; Humans ; Image Processing, Computer-Assisted ; Information processing ; Magnetic Resonance Imaging ; Motion effects ; Motion simulation ; multiband (MB) ; Order parameters ; Parameter estimation ; Physiology ; post‐processing ; Respiration ; Sampling ; Signal processing ; Temporal resolution ; Waveforms</subject><ispartof>Magnetic resonance in medicine, 2021-01, Vol.85 (1), p.309-315</ispartof><rights>2020 International Society for Magnetic Resonance in Medicine</rights><rights>2020 International Society for Magnetic Resonance in Medicine.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3888-f13379539c407f62c202e3574ba50ffb49aeedb155a05623ad6fbd4a783a6e073</citedby><cites>FETCH-LOGICAL-c3888-f13379539c407f62c202e3574ba50ffb49aeedb155a05623ad6fbd4a783a6e073</cites><orcidid>0000-0001-5832-5279 ; 0000-0003-3157-8801</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32720334$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hocke, Lia M.</creatorcontrib><creatorcontrib>Frederick, Blaise B.</creatorcontrib><title>Post‐hoc physiological waveform extraction from motion estimation in simultaneous multislice (SMS) functional MRI using separate stack processing</title><title>Magnetic resonance in medicine</title><addtitle>Magn Reson Med</addtitle><description>Purpose
Motion estimation is an essential step in functional MRI (fMRI) preprocessing. Usually, fMRI processing software packages (eg, FSL and AFNI) automatically estimate motion parameters in order to counteract the effects of motion. However, the time courses of the motion estimation for fMRI data also contain information about physiological processes. Here, we show that respiration and cardiac signals can be extracted from motion estimation at significantly higher bandwidth than is possible with current methods.
Method
To detect motion at high effective temporal resolution (HighRes), the motion parameters of stacks of simultaneously acquired slices were estimated separately, then combined. This method was validated by extracting physiological motion signals from resting state fMRI (rsfMRI) data (Enhanced Nathan Kline Institute—Rockland Sample) and comparing them to respiration belt and pulse oximeter signals.
Results
HighRes motion time‐courses with an effective sampling rate of 15.5 and 11.4 Hz were extracted from repetition time (TR) = 0.645 and 1.4 s data, respectively. Respiration waveforms were extracted with significantly higher accuracy than the original motion parameters. Even cardiac waveforms could be extracted, despite the fact that the sampling time or TR values were too long to sample cardiac frequencies.
Conclusion
HighRes motion traces provide insight into the subjects’ motion at higher frequencies than can be estimated using standard techniques. In its simplest form, this technique can recover accurate respiration signals and may reveal additional complexity in brain motion.</description><subject>Brain - diagnostic imaging</subject><subject>Brain Mapping</subject><subject>cardiac</subject><subject>effective sample rate</subject><subject>Functional magnetic resonance imaging</subject><subject>Heart</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted</subject><subject>Information processing</subject><subject>Magnetic Resonance Imaging</subject><subject>Motion effects</subject><subject>Motion simulation</subject><subject>multiband (MB)</subject><subject>Order parameters</subject><subject>Parameter estimation</subject><subject>Physiology</subject><subject>post‐processing</subject><subject>Respiration</subject><subject>Sampling</subject><subject>Signal processing</subject><subject>Temporal resolution</subject><subject>Waveforms</subject><issn>0740-3194</issn><issn>1522-2594</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kc1u1DAUhS0EokPLghdAlti0i7TXf_lZoopCpY5AbVlHjue6dYnjwU5oZ8cjIPGGPAmeSWGBxMpH8qfPOj6EvGJwzAD4iY_-mNeS1U_IginOC64a-ZQsoJJQCNbIPfIipTsAaJpKPid7glcchJAL8vNTSOOv7z9ug6Hr201yoQ83zuie3utvaEP0FB_GqM3owkBtDJ76sMuYRuf1LrqBJuenftQDhinRbXSpdwbp4dXy6ojaadgJsnZ5eU6n5IYbmnCtox6RplGbL3Qdg8G0vTkgz6zuE758PPfJ57N316cfiouP789P314URtR1XVgmRNUo0RgJlS254cBRqEp2WoG1nWw04qpjSmlQJRd6VdpuJXVVC10iVGKfHM7e_PTXKfdpvUsG-36u0XLJayhLpiCjb_5B78IUc58tpRgDwYXI1NFMmRhSimjbdcx_FDctg3a7VJuXandLZfb1o3HqPK7-kn-mycDJDNy7Hjf_N7XLy-Ws_A0f86DQ</recordid><startdate>202101</startdate><enddate>202101</enddate><creator>Hocke, Lia M.</creator><creator>Frederick, Blaise B.</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>M7Z</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5832-5279</orcidid><orcidid>https://orcid.org/0000-0003-3157-8801</orcidid></search><sort><creationdate>202101</creationdate><title>Post‐hoc physiological waveform extraction from motion estimation in simultaneous multislice (SMS) functional MRI using separate stack processing</title><author>Hocke, Lia M. ; Frederick, Blaise B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3888-f13379539c407f62c202e3574ba50ffb49aeedb155a05623ad6fbd4a783a6e073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Brain - diagnostic imaging</topic><topic>Brain Mapping</topic><topic>cardiac</topic><topic>effective sample rate</topic><topic>Functional magnetic resonance imaging</topic><topic>Heart</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted</topic><topic>Information processing</topic><topic>Magnetic Resonance Imaging</topic><topic>Motion effects</topic><topic>Motion simulation</topic><topic>multiband (MB)</topic><topic>Order parameters</topic><topic>Parameter estimation</topic><topic>Physiology</topic><topic>post‐processing</topic><topic>Respiration</topic><topic>Sampling</topic><topic>Signal processing</topic><topic>Temporal resolution</topic><topic>Waveforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hocke, Lia M.</creatorcontrib><creatorcontrib>Frederick, Blaise B.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biochemistry Abstracts 1</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Magnetic resonance in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hocke, Lia M.</au><au>Frederick, Blaise B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Post‐hoc physiological waveform extraction from motion estimation in simultaneous multislice (SMS) functional MRI using separate stack processing</atitle><jtitle>Magnetic resonance in medicine</jtitle><addtitle>Magn Reson Med</addtitle><date>2021-01</date><risdate>2021</risdate><volume>85</volume><issue>1</issue><spage>309</spage><epage>315</epage><pages>309-315</pages><issn>0740-3194</issn><eissn>1522-2594</eissn><abstract>Purpose
Motion estimation is an essential step in functional MRI (fMRI) preprocessing. Usually, fMRI processing software packages (eg, FSL and AFNI) automatically estimate motion parameters in order to counteract the effects of motion. However, the time courses of the motion estimation for fMRI data also contain information about physiological processes. Here, we show that respiration and cardiac signals can be extracted from motion estimation at significantly higher bandwidth than is possible with current methods.
Method
To detect motion at high effective temporal resolution (HighRes), the motion parameters of stacks of simultaneously acquired slices were estimated separately, then combined. This method was validated by extracting physiological motion signals from resting state fMRI (rsfMRI) data (Enhanced Nathan Kline Institute—Rockland Sample) and comparing them to respiration belt and pulse oximeter signals.
Results
HighRes motion time‐courses with an effective sampling rate of 15.5 and 11.4 Hz were extracted from repetition time (TR) = 0.645 and 1.4 s data, respectively. Respiration waveforms were extracted with significantly higher accuracy than the original motion parameters. Even cardiac waveforms could be extracted, despite the fact that the sampling time or TR values were too long to sample cardiac frequencies.
Conclusion
HighRes motion traces provide insight into the subjects’ motion at higher frequencies than can be estimated using standard techniques. In its simplest form, this technique can recover accurate respiration signals and may reveal additional complexity in brain motion.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>32720334</pmid><doi>10.1002/mrm.28418</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-5832-5279</orcidid><orcidid>https://orcid.org/0000-0003-3157-8801</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0740-3194 |
ispartof | Magnetic resonance in medicine, 2021-01, Vol.85 (1), p.309-315 |
issn | 0740-3194 1522-2594 |
language | eng |
recordid | cdi_proquest_miscellaneous_2428066150 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Brain - diagnostic imaging Brain Mapping cardiac effective sample rate Functional magnetic resonance imaging Heart Humans Image Processing, Computer-Assisted Information processing Magnetic Resonance Imaging Motion effects Motion simulation multiband (MB) Order parameters Parameter estimation Physiology post‐processing Respiration Sampling Signal processing Temporal resolution Waveforms |
title | Post‐hoc physiological waveform extraction from motion estimation in simultaneous multislice (SMS) functional MRI using separate stack processing |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T23%3A44%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Post%E2%80%90hoc%20physiological%20waveform%20extraction%20from%20motion%20estimation%20in%20simultaneous%20multislice%20(SMS)%20functional%20MRI%20using%20separate%20stack%20processing&rft.jtitle=Magnetic%20resonance%20in%20medicine&rft.au=Hocke,%20Lia%20M.&rft.date=2021-01&rft.volume=85&rft.issue=1&rft.spage=309&rft.epage=315&rft.pages=309-315&rft.issn=0740-3194&rft.eissn=1522-2594&rft_id=info:doi/10.1002/mrm.28418&rft_dat=%3Cproquest_cross%3E2428066150%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3888-f13379539c407f62c202e3574ba50ffb49aeedb155a05623ad6fbd4a783a6e073%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2451103233&rft_id=info:pmid/32720334&rfr_iscdi=true |