Loading…

Post‐hoc physiological waveform extraction from motion estimation in simultaneous multislice (SMS) functional MRI using separate stack processing

Purpose Motion estimation is an essential step in functional MRI (fMRI) preprocessing. Usually, fMRI processing software packages (eg, FSL and AFNI) automatically estimate motion parameters in order to counteract the effects of motion. However, the time courses of the motion estimation for fMRI data...

Full description

Saved in:
Bibliographic Details
Published in:Magnetic resonance in medicine 2021-01, Vol.85 (1), p.309-315
Main Authors: Hocke, Lia M., Frederick, Blaise B.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3888-f13379539c407f62c202e3574ba50ffb49aeedb155a05623ad6fbd4a783a6e073
cites cdi_FETCH-LOGICAL-c3888-f13379539c407f62c202e3574ba50ffb49aeedb155a05623ad6fbd4a783a6e073
container_end_page 315
container_issue 1
container_start_page 309
container_title Magnetic resonance in medicine
container_volume 85
creator Hocke, Lia M.
Frederick, Blaise B.
description Purpose Motion estimation is an essential step in functional MRI (fMRI) preprocessing. Usually, fMRI processing software packages (eg, FSL and AFNI) automatically estimate motion parameters in order to counteract the effects of motion. However, the time courses of the motion estimation for fMRI data also contain information about physiological processes. Here, we show that respiration and cardiac signals can be extracted from motion estimation at significantly higher bandwidth than is possible with current methods. Method To detect motion at high effective temporal resolution (HighRes), the motion parameters of stacks of simultaneously acquired slices were estimated separately, then combined. This method was validated by extracting physiological motion signals from resting state fMRI (rsfMRI) data (Enhanced Nathan Kline Institute—Rockland Sample) and comparing them to respiration belt and pulse oximeter signals. Results HighRes motion time‐courses with an effective sampling rate of 15.5 and 11.4 Hz were extracted from repetition time (TR) = 0.645 and 1.4 s data, respectively. Respiration waveforms were extracted with significantly higher accuracy than the original motion parameters. Even cardiac waveforms could be extracted, despite the fact that the sampling time or TR values were too long to sample cardiac frequencies. Conclusion HighRes motion traces provide insight into the subjects’ motion at higher frequencies than can be estimated using standard techniques. In its simplest form, this technique can recover accurate respiration signals and may reveal additional complexity in brain motion.
doi_str_mv 10.1002/mrm.28418
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2428066150</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2428066150</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3888-f13379539c407f62c202e3574ba50ffb49aeedb155a05623ad6fbd4a783a6e073</originalsourceid><addsrcrecordid>eNp1kc1u1DAUhS0EokPLghdAlti0i7TXf_lZoopCpY5AbVlHjue6dYnjwU5oZ8cjIPGGPAmeSWGBxMpH8qfPOj6EvGJwzAD4iY_-mNeS1U_IginOC64a-ZQsoJJQCNbIPfIipTsAaJpKPid7glcchJAL8vNTSOOv7z9ug6Hr201yoQ83zuie3utvaEP0FB_GqM3owkBtDJ76sMuYRuf1LrqBJuenftQDhinRbXSpdwbp4dXy6ojaadgJsnZ5eU6n5IYbmnCtox6RplGbL3Qdg8G0vTkgz6zuE758PPfJ57N316cfiouP789P314URtR1XVgmRNUo0RgJlS254cBRqEp2WoG1nWw04qpjSmlQJRd6VdpuJXVVC10iVGKfHM7e_PTXKfdpvUsG-36u0XLJayhLpiCjb_5B78IUc58tpRgDwYXI1NFMmRhSimjbdcx_FDctg3a7VJuXandLZfb1o3HqPK7-kn-mycDJDNy7Hjf_N7XLy-Ws_A0f86DQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2451103233</pqid></control><display><type>article</type><title>Post‐hoc physiological waveform extraction from motion estimation in simultaneous multislice (SMS) functional MRI using separate stack processing</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Hocke, Lia M. ; Frederick, Blaise B.</creator><creatorcontrib>Hocke, Lia M. ; Frederick, Blaise B.</creatorcontrib><description>Purpose Motion estimation is an essential step in functional MRI (fMRI) preprocessing. Usually, fMRI processing software packages (eg, FSL and AFNI) automatically estimate motion parameters in order to counteract the effects of motion. However, the time courses of the motion estimation for fMRI data also contain information about physiological processes. Here, we show that respiration and cardiac signals can be extracted from motion estimation at significantly higher bandwidth than is possible with current methods. Method To detect motion at high effective temporal resolution (HighRes), the motion parameters of stacks of simultaneously acquired slices were estimated separately, then combined. This method was validated by extracting physiological motion signals from resting state fMRI (rsfMRI) data (Enhanced Nathan Kline Institute—Rockland Sample) and comparing them to respiration belt and pulse oximeter signals. Results HighRes motion time‐courses with an effective sampling rate of 15.5 and 11.4 Hz were extracted from repetition time (TR) = 0.645 and 1.4 s data, respectively. Respiration waveforms were extracted with significantly higher accuracy than the original motion parameters. Even cardiac waveforms could be extracted, despite the fact that the sampling time or TR values were too long to sample cardiac frequencies. Conclusion HighRes motion traces provide insight into the subjects’ motion at higher frequencies than can be estimated using standard techniques. In its simplest form, this technique can recover accurate respiration signals and may reveal additional complexity in brain motion.</description><identifier>ISSN: 0740-3194</identifier><identifier>EISSN: 1522-2594</identifier><identifier>DOI: 10.1002/mrm.28418</identifier><identifier>PMID: 32720334</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>Brain - diagnostic imaging ; Brain Mapping ; cardiac ; effective sample rate ; Functional magnetic resonance imaging ; Heart ; Humans ; Image Processing, Computer-Assisted ; Information processing ; Magnetic Resonance Imaging ; Motion effects ; Motion simulation ; multiband (MB) ; Order parameters ; Parameter estimation ; Physiology ; post‐processing ; Respiration ; Sampling ; Signal processing ; Temporal resolution ; Waveforms</subject><ispartof>Magnetic resonance in medicine, 2021-01, Vol.85 (1), p.309-315</ispartof><rights>2020 International Society for Magnetic Resonance in Medicine</rights><rights>2020 International Society for Magnetic Resonance in Medicine.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3888-f13379539c407f62c202e3574ba50ffb49aeedb155a05623ad6fbd4a783a6e073</citedby><cites>FETCH-LOGICAL-c3888-f13379539c407f62c202e3574ba50ffb49aeedb155a05623ad6fbd4a783a6e073</cites><orcidid>0000-0001-5832-5279 ; 0000-0003-3157-8801</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32720334$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hocke, Lia M.</creatorcontrib><creatorcontrib>Frederick, Blaise B.</creatorcontrib><title>Post‐hoc physiological waveform extraction from motion estimation in simultaneous multislice (SMS) functional MRI using separate stack processing</title><title>Magnetic resonance in medicine</title><addtitle>Magn Reson Med</addtitle><description>Purpose Motion estimation is an essential step in functional MRI (fMRI) preprocessing. Usually, fMRI processing software packages (eg, FSL and AFNI) automatically estimate motion parameters in order to counteract the effects of motion. However, the time courses of the motion estimation for fMRI data also contain information about physiological processes. Here, we show that respiration and cardiac signals can be extracted from motion estimation at significantly higher bandwidth than is possible with current methods. Method To detect motion at high effective temporal resolution (HighRes), the motion parameters of stacks of simultaneously acquired slices were estimated separately, then combined. This method was validated by extracting physiological motion signals from resting state fMRI (rsfMRI) data (Enhanced Nathan Kline Institute—Rockland Sample) and comparing them to respiration belt and pulse oximeter signals. Results HighRes motion time‐courses with an effective sampling rate of 15.5 and 11.4 Hz were extracted from repetition time (TR) = 0.645 and 1.4 s data, respectively. Respiration waveforms were extracted with significantly higher accuracy than the original motion parameters. Even cardiac waveforms could be extracted, despite the fact that the sampling time or TR values were too long to sample cardiac frequencies. Conclusion HighRes motion traces provide insight into the subjects’ motion at higher frequencies than can be estimated using standard techniques. In its simplest form, this technique can recover accurate respiration signals and may reveal additional complexity in brain motion.</description><subject>Brain - diagnostic imaging</subject><subject>Brain Mapping</subject><subject>cardiac</subject><subject>effective sample rate</subject><subject>Functional magnetic resonance imaging</subject><subject>Heart</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted</subject><subject>Information processing</subject><subject>Magnetic Resonance Imaging</subject><subject>Motion effects</subject><subject>Motion simulation</subject><subject>multiband (MB)</subject><subject>Order parameters</subject><subject>Parameter estimation</subject><subject>Physiology</subject><subject>post‐processing</subject><subject>Respiration</subject><subject>Sampling</subject><subject>Signal processing</subject><subject>Temporal resolution</subject><subject>Waveforms</subject><issn>0740-3194</issn><issn>1522-2594</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kc1u1DAUhS0EokPLghdAlti0i7TXf_lZoopCpY5AbVlHjue6dYnjwU5oZ8cjIPGGPAmeSWGBxMpH8qfPOj6EvGJwzAD4iY_-mNeS1U_IginOC64a-ZQsoJJQCNbIPfIipTsAaJpKPid7glcchJAL8vNTSOOv7z9ug6Hr201yoQ83zuie3utvaEP0FB_GqM3owkBtDJ76sMuYRuf1LrqBJuenftQDhinRbXSpdwbp4dXy6ojaadgJsnZ5eU6n5IYbmnCtox6RplGbL3Qdg8G0vTkgz6zuE758PPfJ57N316cfiouP789P314URtR1XVgmRNUo0RgJlS254cBRqEp2WoG1nWw04qpjSmlQJRd6VdpuJXVVC10iVGKfHM7e_PTXKfdpvUsG-36u0XLJayhLpiCjb_5B78IUc58tpRgDwYXI1NFMmRhSimjbdcx_FDctg3a7VJuXandLZfb1o3HqPK7-kn-mycDJDNy7Hjf_N7XLy-Ws_A0f86DQ</recordid><startdate>202101</startdate><enddate>202101</enddate><creator>Hocke, Lia M.</creator><creator>Frederick, Blaise B.</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>M7Z</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5832-5279</orcidid><orcidid>https://orcid.org/0000-0003-3157-8801</orcidid></search><sort><creationdate>202101</creationdate><title>Post‐hoc physiological waveform extraction from motion estimation in simultaneous multislice (SMS) functional MRI using separate stack processing</title><author>Hocke, Lia M. ; Frederick, Blaise B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3888-f13379539c407f62c202e3574ba50ffb49aeedb155a05623ad6fbd4a783a6e073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Brain - diagnostic imaging</topic><topic>Brain Mapping</topic><topic>cardiac</topic><topic>effective sample rate</topic><topic>Functional magnetic resonance imaging</topic><topic>Heart</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted</topic><topic>Information processing</topic><topic>Magnetic Resonance Imaging</topic><topic>Motion effects</topic><topic>Motion simulation</topic><topic>multiband (MB)</topic><topic>Order parameters</topic><topic>Parameter estimation</topic><topic>Physiology</topic><topic>post‐processing</topic><topic>Respiration</topic><topic>Sampling</topic><topic>Signal processing</topic><topic>Temporal resolution</topic><topic>Waveforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hocke, Lia M.</creatorcontrib><creatorcontrib>Frederick, Blaise B.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biochemistry Abstracts 1</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Magnetic resonance in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hocke, Lia M.</au><au>Frederick, Blaise B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Post‐hoc physiological waveform extraction from motion estimation in simultaneous multislice (SMS) functional MRI using separate stack processing</atitle><jtitle>Magnetic resonance in medicine</jtitle><addtitle>Magn Reson Med</addtitle><date>2021-01</date><risdate>2021</risdate><volume>85</volume><issue>1</issue><spage>309</spage><epage>315</epage><pages>309-315</pages><issn>0740-3194</issn><eissn>1522-2594</eissn><abstract>Purpose Motion estimation is an essential step in functional MRI (fMRI) preprocessing. Usually, fMRI processing software packages (eg, FSL and AFNI) automatically estimate motion parameters in order to counteract the effects of motion. However, the time courses of the motion estimation for fMRI data also contain information about physiological processes. Here, we show that respiration and cardiac signals can be extracted from motion estimation at significantly higher bandwidth than is possible with current methods. Method To detect motion at high effective temporal resolution (HighRes), the motion parameters of stacks of simultaneously acquired slices were estimated separately, then combined. This method was validated by extracting physiological motion signals from resting state fMRI (rsfMRI) data (Enhanced Nathan Kline Institute—Rockland Sample) and comparing them to respiration belt and pulse oximeter signals. Results HighRes motion time‐courses with an effective sampling rate of 15.5 and 11.4 Hz were extracted from repetition time (TR) = 0.645 and 1.4 s data, respectively. Respiration waveforms were extracted with significantly higher accuracy than the original motion parameters. Even cardiac waveforms could be extracted, despite the fact that the sampling time or TR values were too long to sample cardiac frequencies. Conclusion HighRes motion traces provide insight into the subjects’ motion at higher frequencies than can be estimated using standard techniques. In its simplest form, this technique can recover accurate respiration signals and may reveal additional complexity in brain motion.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>32720334</pmid><doi>10.1002/mrm.28418</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-5832-5279</orcidid><orcidid>https://orcid.org/0000-0003-3157-8801</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0740-3194
ispartof Magnetic resonance in medicine, 2021-01, Vol.85 (1), p.309-315
issn 0740-3194
1522-2594
language eng
recordid cdi_proquest_miscellaneous_2428066150
source Wiley-Blackwell Read & Publish Collection
subjects Brain - diagnostic imaging
Brain Mapping
cardiac
effective sample rate
Functional magnetic resonance imaging
Heart
Humans
Image Processing, Computer-Assisted
Information processing
Magnetic Resonance Imaging
Motion effects
Motion simulation
multiband (MB)
Order parameters
Parameter estimation
Physiology
post‐processing
Respiration
Sampling
Signal processing
Temporal resolution
Waveforms
title Post‐hoc physiological waveform extraction from motion estimation in simultaneous multislice (SMS) functional MRI using separate stack processing
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T23%3A44%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Post%E2%80%90hoc%20physiological%20waveform%20extraction%20from%20motion%20estimation%20in%20simultaneous%20multislice%20(SMS)%20functional%20MRI%20using%20separate%20stack%20processing&rft.jtitle=Magnetic%20resonance%20in%20medicine&rft.au=Hocke,%20Lia%20M.&rft.date=2021-01&rft.volume=85&rft.issue=1&rft.spage=309&rft.epage=315&rft.pages=309-315&rft.issn=0740-3194&rft.eissn=1522-2594&rft_id=info:doi/10.1002/mrm.28418&rft_dat=%3Cproquest_cross%3E2428066150%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3888-f13379539c407f62c202e3574ba50ffb49aeedb155a05623ad6fbd4a783a6e073%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2451103233&rft_id=info:pmid/32720334&rfr_iscdi=true