Loading…
Stimuli-responsive polymer/nanomaterial hybrids for sensing applications
Chemical and biological/biochemical sensors are capable of generating readout signals that are proportional to the concentration of specific analytes of interest. Signal sensitivity and limit of detection/quantitation can be enhanced through the use of polymers, nanomaterials, and their hybrids. Of...
Saved in:
Published in: | Analyst (London) 2020-08, Vol.145 (17), p.5713-5724 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Chemical and biological/biochemical sensors are capable of generating readout signals that are proportional to the concentration of specific analytes of interest. Signal sensitivity and limit of detection/quantitation can be enhanced through the use of polymers, nanomaterials, and their hybrids. Of particular interest are stimuli-responsive polymers and nanomaterials due to their ability to change their physical and/or chemical characteristics in response to their environment, and/or in the presence of molecular/biomolecular species of interest. Their individual use for sensing applications have many benefits, although this review focuses on the utility of stimuli-responsive polymer and nanomaterial hybrids. We discuss three main topics: stimuli-responsive nanogels, stimuli-responsive network polymers doped with nanomaterials, and nanoparticles modified with stimuli-responsive polymers.
Stimuli-responsive polymer (SRP)-based nanoparticles and SRP/nanomaterial hybrids have myriad applications, we review their uses for chemical sensing and biosensing. |
---|---|
ISSN: | 0003-2654 1364-5528 |
DOI: | 10.1039/d0an00686f |