Loading…
Disturbance mechanisms of lacustrine organic carbon burial: Case study of Cuopu Lake, Southwest China
Lakes are important organic carbon (OC) traps in the global carbon cycle. Recent studies have shown that the rate of OC burial in lacustrine sediments is influenced by factors such as climate change, land-use change, and eutrophication. In this study, we use multiproxy methods to reveal the mechanis...
Saved in:
Published in: | The Science of the total environment 2020-12, Vol.746, p.140615-140615, Article 140615 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Lakes are important organic carbon (OC) traps in the global carbon cycle. Recent studies have shown that the rate of OC burial in lacustrine sediments is influenced by factors such as climate change, land-use change, and eutrophication. In this study, we use multiproxy methods to reveal the mechanisms of lacustrine sediment OC burial in an alpine lake (Cuopu Lake), in southwest China. Combined with the dating from 210Pbex and n-alkanes distribution analysis using the Positive Matrix Factorization model, the sedimentary history was divided into five stages: religious activity (the 1840s–1880s), earthquake (the 1880s–1910s), garrison (the 1910s–1960s), transition (the 1960s–1990s), and ecotourism (the 1990s–2010s). During the earthquake stage, OC burial was dominated by terrestrial solids (>40%) and co-precipitated algae (>30%), with a rapid deposition rate (>4 mm a−1) and low OC concentration ( |
---|---|
ISSN: | 0048-9697 1879-1026 |
DOI: | 10.1016/j.scitotenv.2020.140615 |