Loading…

X-ray tomography with multiple ultranarrow cone beams

Hollow glass microcapillaries or x-ray waveguides very efficiently confine x-rays to submicron or nanospots, which can be used for point projection imaging. However, x-ray beams exiting from such devices have ultranarrow cones that are limited by the critical angle for the total external reflection...

Full description

Saved in:
Bibliographic Details
Published in:Optics express 2020-08, Vol.28 (16), p.23223-23238
Main Authors: Sowa, Katarzyna M., Korecki, Paweł
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Hollow glass microcapillaries or x-ray waveguides very efficiently confine x-rays to submicron or nanospots, which can be used for point projection imaging. However, x-ray beams exiting from such devices have ultranarrow cones that are limited by the critical angle for the total external reflection to a few milliradians. Narrow cone beams result in small fields of view, and the application of multiple-reflection optics to cone beam tomography is challenging. In this work, we describe a new nonconventional tomographic geometry realized with multiple confocal ultranarrow cone beams. The geometry enables an increase in the effective radiation cone to over 10 ° without resolution reduction. The proposed tomographic scans can be performed without truncations of the field of view or limitations of the angular range and do not require sample translations, which are inherent to other multibeam x-ray techniques. Volumetric imaging is possible with a simultaneous iterative reconstruction technique or with a fast approximate noniterative two-step approach. A proof-of-principle experiment was performed in the multipoint projection geometry with polycapillary optics and a multi-pinhole mask inserted upstream of the optics. The geometry is suited for phase-contrast tomography with polychromatic laboratory and synchrotron sources.
ISSN:1094-4087
1094-4087
DOI:10.1364/OE.394262