Loading…
X-ray tomography with multiple ultranarrow cone beams
Hollow glass microcapillaries or x-ray waveguides very efficiently confine x-rays to submicron or nanospots, which can be used for point projection imaging. However, x-ray beams exiting from such devices have ultranarrow cones that are limited by the critical angle for the total external reflection...
Saved in:
Published in: | Optics express 2020-08, Vol.28 (16), p.23223-23238 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Hollow glass microcapillaries or x-ray waveguides very efficiently confine x-rays to submicron or nanospots, which can be used for point projection imaging. However, x-ray beams exiting from such devices have ultranarrow cones that are limited by the critical angle for the total external reflection to a few milliradians. Narrow cone beams result in small fields of view, and the application of multiple-reflection optics to cone beam tomography is challenging. In this work, we describe a new nonconventional tomographic geometry realized with multiple confocal ultranarrow cone beams. The geometry enables an increase in the effective radiation cone to over 10 ° without resolution reduction. The proposed tomographic scans can be performed without truncations of the field of view or limitations of the angular range and do not require sample translations, which are inherent to other multibeam x-ray techniques. Volumetric imaging is possible with a simultaneous iterative reconstruction technique or with a fast approximate noniterative two-step approach. A proof-of-principle experiment was performed in the multipoint projection geometry with polycapillary optics and a multi-pinhole mask inserted upstream of the optics. The geometry is suited for phase-contrast tomography with polychromatic laboratory and synchrotron sources. |
---|---|
ISSN: | 1094-4087 1094-4087 |
DOI: | 10.1364/OE.394262 |