Loading…
Surface-modified mesoporous nanofibers for microfluidic immunosensor with an ultra-sensitivity and high signal-to-noise ratio
How to balance the sensitivity and signal-to-noise ratio of immunosensor remains many challenges during various diseases diagnosis. Here we develop a new microfluidic immunosensor based on surface-modified mesoporous nanofibers, and simultaneously realize an ultra-sensitivity and high signal-to-nois...
Saved in:
Published in: | Biosensors & bioelectronics 2020-10, Vol.166, p.112444-112444, Article 112444 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | How to balance the sensitivity and signal-to-noise ratio of immunosensor remains many challenges during various diseases diagnosis. Here we develop a new microfluidic immunosensor based on surface-modified mesoporous nanofibers, and simultaneously realize an ultra-sensitivity and high signal-to-noise ratio for the detection of multiple biomarkers. In the current study, we fabricated titanium dioxide (TiO2)-based mesoporous electrospinning nanofibers, and modified nanofiber surface with both octadecylphosphonic acid (OPA) and poly(ethylene oxide)-poly(propylene oxide) triblock copolymer (PEO-PPO-PEO). Such nanofibers as solid substrate are covered on microfluidic channels. The porosity of our nanofibers dramatically increased the adsorption capability of antibodies, realizing an ultra sensitivity of biomarker detection. PEO-PPO-PEO modification can significantly block non-specific absorptions, obtaining a satisfied signal-to-noise ratio. For the detection of HIV p24 and interleukin 5 (IL-5), our immunosensor increased 6.41 and 6.93 fold in sensitivity and improved 504.66% and 512.80% in signal-to-noise ratio, in compared with gold standard immunoassay (ELISA) used in the clinic. Our immunosensor also broaden the linear range for the detection of HIV p24 (0.86–800 pg/ml) and IL-5 (0.70–800 pg/ml), in compared with ELISA which is 5.54–500 pg/ml for HIV p24 and 4.84–500 pg/ml for IL-5. Our work provided a guideline for the construction of advanced point-of-care immunosensor with an ultra-sensitivity and high signal-to-noise ratio for disease diagnosis.
•A new immunosensor can realize a high-quality biomarker binding and avoid the non-specific absorption from interfering substances.•A new immunosensor can satisfy ultra-sensitivity and high signal-to-noise ratio for the detection of multiple biomarkers.•A new immunosensor can combine with microfluidic chips for realizing a high-quality point-of-care testing. |
---|---|
ISSN: | 0956-5663 1873-4235 |
DOI: | 10.1016/j.bios.2020.112444 |