Loading…
Maternal and fetal vitamin D and their roles in mineral homeostasis and fetal bone development
During pregnancy, female physiology adapts to meet the additional mineral demands of the developing fetus. Meanwhile, the fetus actively transports minerals across the placenta and maintains high circulating levels to mineralize the rapidly developing skeleton. Most of this mineral is accreted durin...
Saved in:
Published in: | Journal of endocrinological investigation 2021-04, Vol.44 (4), p.643-659 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | During pregnancy, female physiology adapts to meet the additional mineral demands of the developing fetus. Meanwhile, the fetus actively transports minerals across the placenta and maintains high circulating levels to mineralize the rapidly developing skeleton. Most of this mineral is accreted during the last trimester, including 30 g of calcium, 20 g of phosphate and 0.8 g of magnesium. Given the dependence of calcium homeostasis on vitamin D and calcitriol in the adult and child, it may be expected that vitamin D sufficiency would be even more critical during pregnancy and fetal development. However, the pregnant mother and fetus appear to meet their mineral needs independent of vitamin D. Adaptations in maternal mineral and bone metabolism during pregnancy appear to be invoked independent of maternal vitamin D, while fetal mineral metabolism and skeletal development appear to be protected from vitamin D deficiency and genetic disorders of vitamin D physiology. This review discusses key data from both animal models and human studies to address our current knowledge on the role of vitamin D and calcitriol during pregnancy and fetal development. |
---|---|
ISSN: | 1720-8386 0391-4097 1720-8386 |
DOI: | 10.1007/s40618-020-01387-2 |