Loading…
Discovery of Membrane-Permeating Cyclic Peptides via mRNA Display
Small synthetic peptides capable of crossing biological membranes represent valuable tools in cell biology and drug delivery. While several cell-penetrating peptides (CPPs) of natural or synthetic origin have been reported, no peptide is currently known to cross both cytoplasmic and outer embryonic...
Saved in:
Published in: | Bioconjugate chemistry 2020-10, Vol.31 (10), p.2325-2338 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Small synthetic peptides capable of crossing biological membranes represent valuable tools in cell biology and drug delivery. While several cell-penetrating peptides (CPPs) of natural or synthetic origin have been reported, no peptide is currently known to cross both cytoplasmic and outer embryonic membranes. Here, we describe a method to engineer membrane-permeating cyclic peptides (MPPs) with broad permeation activity by screening mRNA display libraries of cyclic peptides against embryos at different developmental stages. The proposed method was demonstrated by identifying peptides capable of permeating Drosophila melanogaster (fruit fly) embryos and mammalian cells. The selected peptide cyclo[Glut-MRKRHASRRE-K*] showed a strong permeation activity of embryos exposed to minimal permeabilization pretreatment, as well as human embryonic stem cells and a murine fibroblast cell line. Notably, in both embryos and mammalian cells, the cyclic peptide outperformed its linear counterpart and the control MPPs. Confocal microscopy and single cell flow cytometry analysis were utilized to assess the degree of permeation both qualitatively and quantitatively. These MPPs have potential application in studying and nondisruptively controlling intracellular or intraembryonic processes. |
---|---|
ISSN: | 1043-1802 1520-4812 |
DOI: | 10.1021/acs.bioconjchem.0c00413 |