Loading…

Alterations of brain endocannabinoidome signaling in germ-free mice

We investigated the hypothesis that the endocannabinoidome (eCBome), an extension of the endocannabinoid (eCB) signaling system with important functions in the CNS, may play a role in the microbiota-gut-brain axis. Using LC-MS/MS and qPCR arrays we profiled the brain eCBome of juvenile (4 weeks) and...

Full description

Saved in:
Bibliographic Details
Published in:Biochimica et biophysica acta. Molecular and cell biology of lipids 2020-12, Vol.1865 (12), p.158786-158786, Article 158786
Main Authors: Manca, Claudia, Shen, Melissa, Boubertakh, Besma, Martin, Cyril, Flamand, Nicolas, Silvestri, Cristoforo, Di Marzo, Vincenzo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We investigated the hypothesis that the endocannabinoidome (eCBome), an extension of the endocannabinoid (eCB) signaling system with important functions in the CNS, may play a role in the microbiota-gut-brain axis. Using LC-MS/MS and qPCR arrays we profiled the brain eCBome of juvenile (4 weeks) and adult (13 weeks) male and female germ-free (GF) mice, which are raised in sterile conditions and virtually devoid of microbiota, present neurophysiological deficits, and were found recently to exhibit a strongly altered gut eCBome in comparison to conventionally raised age/sex-matched controls. The causal effect of the gut microbiome on the eCBome was investigated through the re-introduction into adult male GF mice of a functional gut microbiota by fecal microbiota transfer (FMT). The concentrations of the eCB, 2-arachidonoylglycerol (2-AG), and its 2-monoacylglycerol congeners, were significantly reduced in the brain, but not in the hypothalamus, of both juvenile and adult male and adult female GF mice. FMT rendered these decreases non-statistically significant. The eCB, anandamide (AEA), and its congener N-acylethanolamines (NAEs), were instead increased in the brain of adult female GF mice. Saturated fatty acid-containing NAEs were decreased in adult male GF mouse hypothalamus in a manner not reversed by FMT. Only few changes were observed in the expression of eCBome enzymes and receptors. Our data open the possibility that altered eCBome signaling may underlie some of the brain dysfunctions typical of GF mice.
ISSN:1388-1981
1879-2618
DOI:10.1016/j.bbalip.2020.158786