Loading…

Direct Characteristic-Function Tomography of Quantum States of the Trapped-Ion Motional Oscillator

We implement direct readout of the symmetric characteristic function of quantum states of the motional oscillation of a trapped calcium ion. Suitably chosen internal state rotations combined with internal state-dependent displacements, based on bichromatic laser fields, map the expectation value of...

Full description

Saved in:
Bibliographic Details
Published in:Physical review letters 2020-07, Vol.125 (4), p.1-043602, Article 043602
Main Authors: Flühmann, C., Home, J. P.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We implement direct readout of the symmetric characteristic function of quantum states of the motional oscillation of a trapped calcium ion. Suitably chosen internal state rotations combined with internal state-dependent displacements, based on bichromatic laser fields, map the expectation value of the real or imaginary part of the displacement operator to the internal states, which are subsequently read out. Combining these results provides full information about the symmetric characteristic function. We characterize the technique by applying it to a range of archetypal quantum oscillator states, including displaced and squeezed Gaussian states as well as two and three component superpositions of displaced squeezed states. For each, we discuss relevant features of the characteristic function and Wigner phase-space quasiprobability distribution. The direct reconstruction of these highly nonclassical oscillator states using a reduced number of measurements is an essential tool for understanding and optimizing the control of oscillator systems for quantum sensing and quantum information applications.
ISSN:0031-9007
1079-7114
DOI:10.1103/PhysRevLett.125.043602