Loading…
Velocity selection and the Saffman-Taylor problem
A new approach to the velocity selection problem is presented. It establishes a relation between the existence of propagating steady states as a function of a parameter and a certain inhomogeneous linear problem, the solvability of which determines the set of allowed velocities. The method is illust...
Saved in:
Published in: | Physical review letters 1986-05, Vol.56 (19), p.2028-2031 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c365t-38c7dd230f0dbd46ad326702a9a5d5f75b27536d8a39eb303bea447216bdb7f83 |
---|---|
cites | cdi_FETCH-LOGICAL-c365t-38c7dd230f0dbd46ad326702a9a5d5f75b27536d8a39eb303bea447216bdb7f83 |
container_end_page | 2031 |
container_issue | 19 |
container_start_page | 2028 |
container_title | Physical review letters |
container_volume | 56 |
creator | SHRAIMAN, B. I |
description | A new approach to the velocity selection problem is presented. It establishes a relation between the existence of propagating steady states as a function of a parameter and a certain inhomogeneous linear problem, the solvability of which determines the set of allowed velocities. The method is illustrated on the example of a geometrical model of solidification. It is used to explain analytically the fact that at large velocity the Saffman-Taylor 'fingers' have width close to 1/2 and to predict the scaling exponent for the dependence of the finger width on velocity. (Author) |
doi_str_mv | 10.1103/PhysRevLett.56.2028 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_24345603</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>24345603</sourcerecordid><originalsourceid>FETCH-LOGICAL-c365t-38c7dd230f0dbd46ad326702a9a5d5f75b27536d8a39eb303bea447216bdb7f83</originalsourceid><addsrcrecordid>eNp9kEtLw0AUhQdRbK3-AkGyEHGTemcm88hSii8oKFrdDvOkkUmimVTovzelRbpydRf3O-fAh9A5hinGQG9eluv06n_mvu-njE8JEHmAxhhEmQuMi0M0BqA4LwHECJ2k9AkAmHB5jEZ4-BBJyzHCHz62turXWfLR275qm0w3LuuXPnvTIdS6yRd6Hdsu--paE319io6Cjsmf7e4Evd_fLWaP-fz54Wl2O88t5azPqbTCOUIhgDOu4NpRwgUQXWrmWBDMEMEod1LT0hsK1HhdFIJgbpwRQdIJutr2DrvfK596VVfJ-hh149tVUqSgBeNAB_D6XxBLVhIoCd6gdIvark2p80F9dVWtu7XCoDZS1Z5UxbjaSB1SF7uBlam928tsLQ7A5Q7QyeoYOt3YKv1xEgghhaS_7FGBAQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1859209213</pqid></control><display><type>article</type><title>Velocity selection and the Saffman-Taylor problem</title><source>American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)</source><creator>SHRAIMAN, B. I</creator><creatorcontrib>SHRAIMAN, B. I</creatorcontrib><description>A new approach to the velocity selection problem is presented. It establishes a relation between the existence of propagating steady states as a function of a parameter and a certain inhomogeneous linear problem, the solvability of which determines the set of allowed velocities. The method is illustrated on the example of a geometrical model of solidification. It is used to explain analytically the fact that at large velocity the Saffman-Taylor 'fingers' have width close to 1/2 and to predict the scaling exponent for the dependence of the finger width on velocity. (Author)</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/PhysRevLett.56.2028</identifier><identifier>PMID: 10032839</identifier><identifier>CODEN: PRLTAO</identifier><language>eng</language><publisher>Ridge, NY: American Physical Society</publisher><subject>Exact sciences and technology ; Fluid dynamics ; Fundamental areas of phenomenology (including applications) ; Nonhomogeneous flows ; Physics</subject><ispartof>Physical review letters, 1986-05, Vol.56 (19), p.2028-2031</ispartof><rights>1987 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c365t-38c7dd230f0dbd46ad326702a9a5d5f75b27536d8a39eb303bea447216bdb7f83</citedby><cites>FETCH-LOGICAL-c365t-38c7dd230f0dbd46ad326702a9a5d5f75b27536d8a39eb303bea447216bdb7f83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=8022248$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10032839$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>SHRAIMAN, B. I</creatorcontrib><title>Velocity selection and the Saffman-Taylor problem</title><title>Physical review letters</title><addtitle>Phys Rev Lett</addtitle><description>A new approach to the velocity selection problem is presented. It establishes a relation between the existence of propagating steady states as a function of a parameter and a certain inhomogeneous linear problem, the solvability of which determines the set of allowed velocities. The method is illustrated on the example of a geometrical model of solidification. It is used to explain analytically the fact that at large velocity the Saffman-Taylor 'fingers' have width close to 1/2 and to predict the scaling exponent for the dependence of the finger width on velocity. (Author)</description><subject>Exact sciences and technology</subject><subject>Fluid dynamics</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Nonhomogeneous flows</subject><subject>Physics</subject><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1986</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLw0AUhQdRbK3-AkGyEHGTemcm88hSii8oKFrdDvOkkUmimVTovzelRbpydRf3O-fAh9A5hinGQG9eluv06n_mvu-njE8JEHmAxhhEmQuMi0M0BqA4LwHECJ2k9AkAmHB5jEZ4-BBJyzHCHz62turXWfLR275qm0w3LuuXPnvTIdS6yRd6Hdsu--paE319io6Cjsmf7e4Evd_fLWaP-fz54Wl2O88t5azPqbTCOUIhgDOu4NpRwgUQXWrmWBDMEMEod1LT0hsK1HhdFIJgbpwRQdIJutr2DrvfK596VVfJ-hh149tVUqSgBeNAB_D6XxBLVhIoCd6gdIvark2p80F9dVWtu7XCoDZS1Z5UxbjaSB1SF7uBlam928tsLQ7A5Q7QyeoYOt3YKv1xEgghhaS_7FGBAQ</recordid><startdate>19860512</startdate><enddate>19860512</enddate><creator>SHRAIMAN, B. I</creator><general>American Physical Society</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>19860512</creationdate><title>Velocity selection and the Saffman-Taylor problem</title><author>SHRAIMAN, B. I</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c365t-38c7dd230f0dbd46ad326702a9a5d5f75b27536d8a39eb303bea447216bdb7f83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1986</creationdate><topic>Exact sciences and technology</topic><topic>Fluid dynamics</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Nonhomogeneous flows</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>SHRAIMAN, B. I</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>SHRAIMAN, B. I</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Velocity selection and the Saffman-Taylor problem</atitle><jtitle>Physical review letters</jtitle><addtitle>Phys Rev Lett</addtitle><date>1986-05-12</date><risdate>1986</risdate><volume>56</volume><issue>19</issue><spage>2028</spage><epage>2031</epage><pages>2028-2031</pages><issn>0031-9007</issn><eissn>1079-7114</eissn><coden>PRLTAO</coden><abstract>A new approach to the velocity selection problem is presented. It establishes a relation between the existence of propagating steady states as a function of a parameter and a certain inhomogeneous linear problem, the solvability of which determines the set of allowed velocities. The method is illustrated on the example of a geometrical model of solidification. It is used to explain analytically the fact that at large velocity the Saffman-Taylor 'fingers' have width close to 1/2 and to predict the scaling exponent for the dependence of the finger width on velocity. (Author)</abstract><cop>Ridge, NY</cop><pub>American Physical Society</pub><pmid>10032839</pmid><doi>10.1103/PhysRevLett.56.2028</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0031-9007 |
ispartof | Physical review letters, 1986-05, Vol.56 (19), p.2028-2031 |
issn | 0031-9007 1079-7114 |
language | eng |
recordid | cdi_proquest_miscellaneous_24345603 |
source | American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list) |
subjects | Exact sciences and technology Fluid dynamics Fundamental areas of phenomenology (including applications) Nonhomogeneous flows Physics |
title | Velocity selection and the Saffman-Taylor problem |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T13%3A57%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Velocity%20selection%20and%20the%20Saffman-Taylor%20problem&rft.jtitle=Physical%20review%20letters&rft.au=SHRAIMAN,%20B.%20I&rft.date=1986-05-12&rft.volume=56&rft.issue=19&rft.spage=2028&rft.epage=2031&rft.pages=2028-2031&rft.issn=0031-9007&rft.eissn=1079-7114&rft.coden=PRLTAO&rft_id=info:doi/10.1103/PhysRevLett.56.2028&rft_dat=%3Cproquest_cross%3E24345603%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c365t-38c7dd230f0dbd46ad326702a9a5d5f75b27536d8a39eb303bea447216bdb7f83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1859209213&rft_id=info:pmid/10032839&rfr_iscdi=true |