Loading…

Deep Learning Based Software to Identify Large Vessel Occlusion on Noncontrast Computed Tomography

BACKGROUND AND PURPOSE:Reliable recognition of large vessel occlusion (LVO) on noncontrast computed tomography (NCCT) may accelerate identification of endovascular treatment candidates. We aim to validate a machine learning algorithm (MethinksLVO) to identify LVO on NCCT. METHODS:Patients with suspe...

Full description

Saved in:
Bibliographic Details
Published in:Stroke (1970) 2020-10, Vol.51 (10), p.3133-3137
Main Authors: Olive-Gadea, Marta, Crespo, Carlos, Granes, Cristina, Hernandez-Perez, Maria, Pérez de la Ossa, Natalia, Laredo, Carlos, Urra, Xabier, Carlos Soler, Juan, Soler, Alexander, Puyalto, Paloma, Cuadras, Patricia, Marti, Cristian, Ribo, Marc
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4246-47e37f6cefefe1e9118b0ad1d0945b5b7467de0319c1ccb5b31923d063866e373
cites cdi_FETCH-LOGICAL-c4246-47e37f6cefefe1e9118b0ad1d0945b5b7467de0319c1ccb5b31923d063866e373
container_end_page 3137
container_issue 10
container_start_page 3133
container_title Stroke (1970)
container_volume 51
creator Olive-Gadea, Marta
Crespo, Carlos
Granes, Cristina
Hernandez-Perez, Maria
Pérez de la Ossa, Natalia
Laredo, Carlos
Urra, Xabier
Carlos Soler, Juan
Soler, Alexander
Puyalto, Paloma
Cuadras, Patricia
Marti, Cristian
Ribo, Marc
description BACKGROUND AND PURPOSE:Reliable recognition of large vessel occlusion (LVO) on noncontrast computed tomography (NCCT) may accelerate identification of endovascular treatment candidates. We aim to validate a machine learning algorithm (MethinksLVO) to identify LVO on NCCT. METHODS:Patients with suspected acute stroke who underwent NCCT and computed tomography angiography (CTA) were included. Software detection of LVO (MethinksLVO) on NCCT was tested against the CTA readings of 2 experienced radiologists (NR-CTA). We used a deep learning algorithm to identify clot signs on NCCT. The software image output trained a binary classifier to determine LVO on NCCT. We studied software accuracy when adding National Institutes of Health Stroke Scale and time from onset to the model (MethinksLVO+). RESULTS:From 1453 patients, 823 (57%) had LVO by NR-CTA. The area under the curve for the identification of LVO with MethinksLVO was 0.87 (sensitivity83%, specificity71%, positive predictive value79%, negative predictive value76%) and improved to 0.91 with MethinksLVO+ (sensitivity83%, specificity85%, positive predictive value88%, negative predictive value79%). CONCLUSIONS:In patients with suspected acute stroke, MethinksLVO software can rapidly and reliably predict LVO. MethinksLVO could reduce the need to perform CTA, generate alarms, and increase the efficiency of patient transfers in stroke networks.
doi_str_mv 10.1161/STROKEAHA.120.030326
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2437402275</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2437402275</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4246-47e37f6cefefe1e9118b0ad1d0945b5b7467de0319c1ccb5b31923d063866e373</originalsourceid><addsrcrecordid>eNqFkU1v2zAMhoVhBZq1-wc96NiLM-rDsn3MsnYpFjRAk-4qKDKdeHMsT5IR5N9PQYodV5AEP8CHh5eE3DGYMqbYl_XmZfXjYbaYTRmHKQgQXH0gE5ZzmUnFy49kAiCqjMuquiafQvgFAFyU-YRsvyEOdInG922_o19NwJquXROPxiONjj7V2Me2OdGl8TukPzEE7OjK2m4Mretp8mfXW9dHb0Kkc3cYxphubNzB7bwZ9qdbctWYLuDnt3xDXh8fNvNFtlx9f5rPlpmVXKpMFiiKRllskjGsGCu3YGpWQyXzbb4tpCpqBMEqy6xNg1RxUYMSpVIJFTfk_nJ38O7PiCHqQxssdp3p0Y1BcykKCZwXeVqVl1XrXQgeGz349mD8STPQZ0n1P0l1klRfJE1YecGOrovow-9uPKLXezRd3L-Hyv-g6R1QqAIyDhzYuctSCCX-AsZ-jIY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2437402275</pqid></control><display><type>article</type><title>Deep Learning Based Software to Identify Large Vessel Occlusion on Noncontrast Computed Tomography</title><source>Alma/SFX Local Collection</source><creator>Olive-Gadea, Marta ; Crespo, Carlos ; Granes, Cristina ; Hernandez-Perez, Maria ; Pérez de la Ossa, Natalia ; Laredo, Carlos ; Urra, Xabier ; Carlos Soler, Juan ; Soler, Alexander ; Puyalto, Paloma ; Cuadras, Patricia ; Marti, Cristian ; Ribo, Marc</creator><creatorcontrib>Olive-Gadea, Marta ; Crespo, Carlos ; Granes, Cristina ; Hernandez-Perez, Maria ; Pérez de la Ossa, Natalia ; Laredo, Carlos ; Urra, Xabier ; Carlos Soler, Juan ; Soler, Alexander ; Puyalto, Paloma ; Cuadras, Patricia ; Marti, Cristian ; Ribo, Marc</creatorcontrib><description>BACKGROUND AND PURPOSE:Reliable recognition of large vessel occlusion (LVO) on noncontrast computed tomography (NCCT) may accelerate identification of endovascular treatment candidates. We aim to validate a machine learning algorithm (MethinksLVO) to identify LVO on NCCT. METHODS:Patients with suspected acute stroke who underwent NCCT and computed tomography angiography (CTA) were included. Software detection of LVO (MethinksLVO) on NCCT was tested against the CTA readings of 2 experienced radiologists (NR-CTA). We used a deep learning algorithm to identify clot signs on NCCT. The software image output trained a binary classifier to determine LVO on NCCT. We studied software accuracy when adding National Institutes of Health Stroke Scale and time from onset to the model (MethinksLVO+). RESULTS:From 1453 patients, 823 (57%) had LVO by NR-CTA. The area under the curve for the identification of LVO with MethinksLVO was 0.87 (sensitivity83%, specificity71%, positive predictive value79%, negative predictive value76%) and improved to 0.91 with MethinksLVO+ (sensitivity83%, specificity85%, positive predictive value88%, negative predictive value79%). CONCLUSIONS:In patients with suspected acute stroke, MethinksLVO software can rapidly and reliably predict LVO. MethinksLVO could reduce the need to perform CTA, generate alarms, and increase the efficiency of patient transfers in stroke networks.</description><identifier>ISSN: 0039-2499</identifier><identifier>EISSN: 1524-4628</identifier><identifier>DOI: 10.1161/STROKEAHA.120.030326</identifier><language>eng</language><publisher>American Heart Association, Inc</publisher><ispartof>Stroke (1970), 2020-10, Vol.51 (10), p.3133-3137</ispartof><rights>American Heart Association, Inc.</rights><rights>2020 American Heart Association, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4246-47e37f6cefefe1e9118b0ad1d0945b5b7467de0319c1ccb5b31923d063866e373</citedby><cites>FETCH-LOGICAL-c4246-47e37f6cefefe1e9118b0ad1d0945b5b7467de0319c1ccb5b31923d063866e373</cites><orcidid>0000-0002-4626-6360 ; 0000-0002-0767-9752 ; 0000-0002-4763-5252 ; 0000-0001-9242-043X ; 0000-0002-4828-5231</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Olive-Gadea, Marta</creatorcontrib><creatorcontrib>Crespo, Carlos</creatorcontrib><creatorcontrib>Granes, Cristina</creatorcontrib><creatorcontrib>Hernandez-Perez, Maria</creatorcontrib><creatorcontrib>Pérez de la Ossa, Natalia</creatorcontrib><creatorcontrib>Laredo, Carlos</creatorcontrib><creatorcontrib>Urra, Xabier</creatorcontrib><creatorcontrib>Carlos Soler, Juan</creatorcontrib><creatorcontrib>Soler, Alexander</creatorcontrib><creatorcontrib>Puyalto, Paloma</creatorcontrib><creatorcontrib>Cuadras, Patricia</creatorcontrib><creatorcontrib>Marti, Cristian</creatorcontrib><creatorcontrib>Ribo, Marc</creatorcontrib><title>Deep Learning Based Software to Identify Large Vessel Occlusion on Noncontrast Computed Tomography</title><title>Stroke (1970)</title><description>BACKGROUND AND PURPOSE:Reliable recognition of large vessel occlusion (LVO) on noncontrast computed tomography (NCCT) may accelerate identification of endovascular treatment candidates. We aim to validate a machine learning algorithm (MethinksLVO) to identify LVO on NCCT. METHODS:Patients with suspected acute stroke who underwent NCCT and computed tomography angiography (CTA) were included. Software detection of LVO (MethinksLVO) on NCCT was tested against the CTA readings of 2 experienced radiologists (NR-CTA). We used a deep learning algorithm to identify clot signs on NCCT. The software image output trained a binary classifier to determine LVO on NCCT. We studied software accuracy when adding National Institutes of Health Stroke Scale and time from onset to the model (MethinksLVO+). RESULTS:From 1453 patients, 823 (57%) had LVO by NR-CTA. The area under the curve for the identification of LVO with MethinksLVO was 0.87 (sensitivity83%, specificity71%, positive predictive value79%, negative predictive value76%) and improved to 0.91 with MethinksLVO+ (sensitivity83%, specificity85%, positive predictive value88%, negative predictive value79%). CONCLUSIONS:In patients with suspected acute stroke, MethinksLVO software can rapidly and reliably predict LVO. MethinksLVO could reduce the need to perform CTA, generate alarms, and increase the efficiency of patient transfers in stroke networks.</description><issn>0039-2499</issn><issn>1524-4628</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkU1v2zAMhoVhBZq1-wc96NiLM-rDsn3MsnYpFjRAk-4qKDKdeHMsT5IR5N9PQYodV5AEP8CHh5eE3DGYMqbYl_XmZfXjYbaYTRmHKQgQXH0gE5ZzmUnFy49kAiCqjMuquiafQvgFAFyU-YRsvyEOdInG922_o19NwJquXROPxiONjj7V2Me2OdGl8TukPzEE7OjK2m4Mretp8mfXW9dHb0Kkc3cYxphubNzB7bwZ9qdbctWYLuDnt3xDXh8fNvNFtlx9f5rPlpmVXKpMFiiKRllskjGsGCu3YGpWQyXzbb4tpCpqBMEqy6xNg1RxUYMSpVIJFTfk_nJ38O7PiCHqQxssdp3p0Y1BcykKCZwXeVqVl1XrXQgeGz349mD8STPQZ0n1P0l1klRfJE1YecGOrovow-9uPKLXezRd3L-Hyv-g6R1QqAIyDhzYuctSCCX-AsZ-jIY</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Olive-Gadea, Marta</creator><creator>Crespo, Carlos</creator><creator>Granes, Cristina</creator><creator>Hernandez-Perez, Maria</creator><creator>Pérez de la Ossa, Natalia</creator><creator>Laredo, Carlos</creator><creator>Urra, Xabier</creator><creator>Carlos Soler, Juan</creator><creator>Soler, Alexander</creator><creator>Puyalto, Paloma</creator><creator>Cuadras, Patricia</creator><creator>Marti, Cristian</creator><creator>Ribo, Marc</creator><general>American Heart Association, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4626-6360</orcidid><orcidid>https://orcid.org/0000-0002-0767-9752</orcidid><orcidid>https://orcid.org/0000-0002-4763-5252</orcidid><orcidid>https://orcid.org/0000-0001-9242-043X</orcidid><orcidid>https://orcid.org/0000-0002-4828-5231</orcidid></search><sort><creationdate>20201001</creationdate><title>Deep Learning Based Software to Identify Large Vessel Occlusion on Noncontrast Computed Tomography</title><author>Olive-Gadea, Marta ; Crespo, Carlos ; Granes, Cristina ; Hernandez-Perez, Maria ; Pérez de la Ossa, Natalia ; Laredo, Carlos ; Urra, Xabier ; Carlos Soler, Juan ; Soler, Alexander ; Puyalto, Paloma ; Cuadras, Patricia ; Marti, Cristian ; Ribo, Marc</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4246-47e37f6cefefe1e9118b0ad1d0945b5b7467de0319c1ccb5b31923d063866e373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Olive-Gadea, Marta</creatorcontrib><creatorcontrib>Crespo, Carlos</creatorcontrib><creatorcontrib>Granes, Cristina</creatorcontrib><creatorcontrib>Hernandez-Perez, Maria</creatorcontrib><creatorcontrib>Pérez de la Ossa, Natalia</creatorcontrib><creatorcontrib>Laredo, Carlos</creatorcontrib><creatorcontrib>Urra, Xabier</creatorcontrib><creatorcontrib>Carlos Soler, Juan</creatorcontrib><creatorcontrib>Soler, Alexander</creatorcontrib><creatorcontrib>Puyalto, Paloma</creatorcontrib><creatorcontrib>Cuadras, Patricia</creatorcontrib><creatorcontrib>Marti, Cristian</creatorcontrib><creatorcontrib>Ribo, Marc</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Stroke (1970)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Olive-Gadea, Marta</au><au>Crespo, Carlos</au><au>Granes, Cristina</au><au>Hernandez-Perez, Maria</au><au>Pérez de la Ossa, Natalia</au><au>Laredo, Carlos</au><au>Urra, Xabier</au><au>Carlos Soler, Juan</au><au>Soler, Alexander</au><au>Puyalto, Paloma</au><au>Cuadras, Patricia</au><au>Marti, Cristian</au><au>Ribo, Marc</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep Learning Based Software to Identify Large Vessel Occlusion on Noncontrast Computed Tomography</atitle><jtitle>Stroke (1970)</jtitle><date>2020-10-01</date><risdate>2020</risdate><volume>51</volume><issue>10</issue><spage>3133</spage><epage>3137</epage><pages>3133-3137</pages><issn>0039-2499</issn><eissn>1524-4628</eissn><abstract>BACKGROUND AND PURPOSE:Reliable recognition of large vessel occlusion (LVO) on noncontrast computed tomography (NCCT) may accelerate identification of endovascular treatment candidates. We aim to validate a machine learning algorithm (MethinksLVO) to identify LVO on NCCT. METHODS:Patients with suspected acute stroke who underwent NCCT and computed tomography angiography (CTA) were included. Software detection of LVO (MethinksLVO) on NCCT was tested against the CTA readings of 2 experienced radiologists (NR-CTA). We used a deep learning algorithm to identify clot signs on NCCT. The software image output trained a binary classifier to determine LVO on NCCT. We studied software accuracy when adding National Institutes of Health Stroke Scale and time from onset to the model (MethinksLVO+). RESULTS:From 1453 patients, 823 (57%) had LVO by NR-CTA. The area under the curve for the identification of LVO with MethinksLVO was 0.87 (sensitivity83%, specificity71%, positive predictive value79%, negative predictive value76%) and improved to 0.91 with MethinksLVO+ (sensitivity83%, specificity85%, positive predictive value88%, negative predictive value79%). CONCLUSIONS:In patients with suspected acute stroke, MethinksLVO software can rapidly and reliably predict LVO. MethinksLVO could reduce the need to perform CTA, generate alarms, and increase the efficiency of patient transfers in stroke networks.</abstract><pub>American Heart Association, Inc</pub><doi>10.1161/STROKEAHA.120.030326</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-4626-6360</orcidid><orcidid>https://orcid.org/0000-0002-0767-9752</orcidid><orcidid>https://orcid.org/0000-0002-4763-5252</orcidid><orcidid>https://orcid.org/0000-0001-9242-043X</orcidid><orcidid>https://orcid.org/0000-0002-4828-5231</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0039-2499
ispartof Stroke (1970), 2020-10, Vol.51 (10), p.3133-3137
issn 0039-2499
1524-4628
language eng
recordid cdi_proquest_miscellaneous_2437402275
source Alma/SFX Local Collection
title Deep Learning Based Software to Identify Large Vessel Occlusion on Noncontrast Computed Tomography
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T19%3A23%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20Learning%20Based%20Software%20to%20Identify%20Large%20Vessel%20Occlusion%20on%20Noncontrast%20Computed%20Tomography&rft.jtitle=Stroke%20(1970)&rft.au=Olive-Gadea,%20Marta&rft.date=2020-10-01&rft.volume=51&rft.issue=10&rft.spage=3133&rft.epage=3137&rft.pages=3133-3137&rft.issn=0039-2499&rft.eissn=1524-4628&rft_id=info:doi/10.1161/STROKEAHA.120.030326&rft_dat=%3Cproquest_cross%3E2437402275%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4246-47e37f6cefefe1e9118b0ad1d0945b5b7467de0319c1ccb5b31923d063866e373%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2437402275&rft_id=info:pmid/&rfr_iscdi=true