Loading…
Deep Learning Based Software to Identify Large Vessel Occlusion on Noncontrast Computed Tomography
BACKGROUND AND PURPOSE:Reliable recognition of large vessel occlusion (LVO) on noncontrast computed tomography (NCCT) may accelerate identification of endovascular treatment candidates. We aim to validate a machine learning algorithm (MethinksLVO) to identify LVO on NCCT. METHODS:Patients with suspe...
Saved in:
Published in: | Stroke (1970) 2020-10, Vol.51 (10), p.3133-3137 |
---|---|
Main Authors: | , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c4246-47e37f6cefefe1e9118b0ad1d0945b5b7467de0319c1ccb5b31923d063866e373 |
---|---|
cites | cdi_FETCH-LOGICAL-c4246-47e37f6cefefe1e9118b0ad1d0945b5b7467de0319c1ccb5b31923d063866e373 |
container_end_page | 3137 |
container_issue | 10 |
container_start_page | 3133 |
container_title | Stroke (1970) |
container_volume | 51 |
creator | Olive-Gadea, Marta Crespo, Carlos Granes, Cristina Hernandez-Perez, Maria Pérez de la Ossa, Natalia Laredo, Carlos Urra, Xabier Carlos Soler, Juan Soler, Alexander Puyalto, Paloma Cuadras, Patricia Marti, Cristian Ribo, Marc |
description | BACKGROUND AND PURPOSE:Reliable recognition of large vessel occlusion (LVO) on noncontrast computed tomography (NCCT) may accelerate identification of endovascular treatment candidates. We aim to validate a machine learning algorithm (MethinksLVO) to identify LVO on NCCT.
METHODS:Patients with suspected acute stroke who underwent NCCT and computed tomography angiography (CTA) were included. Software detection of LVO (MethinksLVO) on NCCT was tested against the CTA readings of 2 experienced radiologists (NR-CTA). We used a deep learning algorithm to identify clot signs on NCCT. The software image output trained a binary classifier to determine LVO on NCCT. We studied software accuracy when adding National Institutes of Health Stroke Scale and time from onset to the model (MethinksLVO+).
RESULTS:From 1453 patients, 823 (57%) had LVO by NR-CTA. The area under the curve for the identification of LVO with MethinksLVO was 0.87 (sensitivity83%, specificity71%, positive predictive value79%, negative predictive value76%) and improved to 0.91 with MethinksLVO+ (sensitivity83%, specificity85%, positive predictive value88%, negative predictive value79%).
CONCLUSIONS:In patients with suspected acute stroke, MethinksLVO software can rapidly and reliably predict LVO. MethinksLVO could reduce the need to perform CTA, generate alarms, and increase the efficiency of patient transfers in stroke networks. |
doi_str_mv | 10.1161/STROKEAHA.120.030326 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2437402275</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2437402275</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4246-47e37f6cefefe1e9118b0ad1d0945b5b7467de0319c1ccb5b31923d063866e373</originalsourceid><addsrcrecordid>eNqFkU1v2zAMhoVhBZq1-wc96NiLM-rDsn3MsnYpFjRAk-4qKDKdeHMsT5IR5N9PQYodV5AEP8CHh5eE3DGYMqbYl_XmZfXjYbaYTRmHKQgQXH0gE5ZzmUnFy49kAiCqjMuquiafQvgFAFyU-YRsvyEOdInG922_o19NwJquXROPxiONjj7V2Me2OdGl8TukPzEE7OjK2m4Mretp8mfXW9dHb0Kkc3cYxphubNzB7bwZ9qdbctWYLuDnt3xDXh8fNvNFtlx9f5rPlpmVXKpMFiiKRllskjGsGCu3YGpWQyXzbb4tpCpqBMEqy6xNg1RxUYMSpVIJFTfk_nJ38O7PiCHqQxssdp3p0Y1BcykKCZwXeVqVl1XrXQgeGz349mD8STPQZ0n1P0l1klRfJE1YecGOrovow-9uPKLXezRd3L-Hyv-g6R1QqAIyDhzYuctSCCX-AsZ-jIY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2437402275</pqid></control><display><type>article</type><title>Deep Learning Based Software to Identify Large Vessel Occlusion on Noncontrast Computed Tomography</title><source>Alma/SFX Local Collection</source><creator>Olive-Gadea, Marta ; Crespo, Carlos ; Granes, Cristina ; Hernandez-Perez, Maria ; Pérez de la Ossa, Natalia ; Laredo, Carlos ; Urra, Xabier ; Carlos Soler, Juan ; Soler, Alexander ; Puyalto, Paloma ; Cuadras, Patricia ; Marti, Cristian ; Ribo, Marc</creator><creatorcontrib>Olive-Gadea, Marta ; Crespo, Carlos ; Granes, Cristina ; Hernandez-Perez, Maria ; Pérez de la Ossa, Natalia ; Laredo, Carlos ; Urra, Xabier ; Carlos Soler, Juan ; Soler, Alexander ; Puyalto, Paloma ; Cuadras, Patricia ; Marti, Cristian ; Ribo, Marc</creatorcontrib><description>BACKGROUND AND PURPOSE:Reliable recognition of large vessel occlusion (LVO) on noncontrast computed tomography (NCCT) may accelerate identification of endovascular treatment candidates. We aim to validate a machine learning algorithm (MethinksLVO) to identify LVO on NCCT.
METHODS:Patients with suspected acute stroke who underwent NCCT and computed tomography angiography (CTA) were included. Software detection of LVO (MethinksLVO) on NCCT was tested against the CTA readings of 2 experienced radiologists (NR-CTA). We used a deep learning algorithm to identify clot signs on NCCT. The software image output trained a binary classifier to determine LVO on NCCT. We studied software accuracy when adding National Institutes of Health Stroke Scale and time from onset to the model (MethinksLVO+).
RESULTS:From 1453 patients, 823 (57%) had LVO by NR-CTA. The area under the curve for the identification of LVO with MethinksLVO was 0.87 (sensitivity83%, specificity71%, positive predictive value79%, negative predictive value76%) and improved to 0.91 with MethinksLVO+ (sensitivity83%, specificity85%, positive predictive value88%, negative predictive value79%).
CONCLUSIONS:In patients with suspected acute stroke, MethinksLVO software can rapidly and reliably predict LVO. MethinksLVO could reduce the need to perform CTA, generate alarms, and increase the efficiency of patient transfers in stroke networks.</description><identifier>ISSN: 0039-2499</identifier><identifier>EISSN: 1524-4628</identifier><identifier>DOI: 10.1161/STROKEAHA.120.030326</identifier><language>eng</language><publisher>American Heart Association, Inc</publisher><ispartof>Stroke (1970), 2020-10, Vol.51 (10), p.3133-3137</ispartof><rights>American Heart Association, Inc.</rights><rights>2020 American Heart Association, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4246-47e37f6cefefe1e9118b0ad1d0945b5b7467de0319c1ccb5b31923d063866e373</citedby><cites>FETCH-LOGICAL-c4246-47e37f6cefefe1e9118b0ad1d0945b5b7467de0319c1ccb5b31923d063866e373</cites><orcidid>0000-0002-4626-6360 ; 0000-0002-0767-9752 ; 0000-0002-4763-5252 ; 0000-0001-9242-043X ; 0000-0002-4828-5231</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Olive-Gadea, Marta</creatorcontrib><creatorcontrib>Crespo, Carlos</creatorcontrib><creatorcontrib>Granes, Cristina</creatorcontrib><creatorcontrib>Hernandez-Perez, Maria</creatorcontrib><creatorcontrib>Pérez de la Ossa, Natalia</creatorcontrib><creatorcontrib>Laredo, Carlos</creatorcontrib><creatorcontrib>Urra, Xabier</creatorcontrib><creatorcontrib>Carlos Soler, Juan</creatorcontrib><creatorcontrib>Soler, Alexander</creatorcontrib><creatorcontrib>Puyalto, Paloma</creatorcontrib><creatorcontrib>Cuadras, Patricia</creatorcontrib><creatorcontrib>Marti, Cristian</creatorcontrib><creatorcontrib>Ribo, Marc</creatorcontrib><title>Deep Learning Based Software to Identify Large Vessel Occlusion on Noncontrast Computed Tomography</title><title>Stroke (1970)</title><description>BACKGROUND AND PURPOSE:Reliable recognition of large vessel occlusion (LVO) on noncontrast computed tomography (NCCT) may accelerate identification of endovascular treatment candidates. We aim to validate a machine learning algorithm (MethinksLVO) to identify LVO on NCCT.
METHODS:Patients with suspected acute stroke who underwent NCCT and computed tomography angiography (CTA) were included. Software detection of LVO (MethinksLVO) on NCCT was tested against the CTA readings of 2 experienced radiologists (NR-CTA). We used a deep learning algorithm to identify clot signs on NCCT. The software image output trained a binary classifier to determine LVO on NCCT. We studied software accuracy when adding National Institutes of Health Stroke Scale and time from onset to the model (MethinksLVO+).
RESULTS:From 1453 patients, 823 (57%) had LVO by NR-CTA. The area under the curve for the identification of LVO with MethinksLVO was 0.87 (sensitivity83%, specificity71%, positive predictive value79%, negative predictive value76%) and improved to 0.91 with MethinksLVO+ (sensitivity83%, specificity85%, positive predictive value88%, negative predictive value79%).
CONCLUSIONS:In patients with suspected acute stroke, MethinksLVO software can rapidly and reliably predict LVO. MethinksLVO could reduce the need to perform CTA, generate alarms, and increase the efficiency of patient transfers in stroke networks.</description><issn>0039-2499</issn><issn>1524-4628</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkU1v2zAMhoVhBZq1-wc96NiLM-rDsn3MsnYpFjRAk-4qKDKdeHMsT5IR5N9PQYodV5AEP8CHh5eE3DGYMqbYl_XmZfXjYbaYTRmHKQgQXH0gE5ZzmUnFy49kAiCqjMuquiafQvgFAFyU-YRsvyEOdInG922_o19NwJquXROPxiONjj7V2Me2OdGl8TukPzEE7OjK2m4Mretp8mfXW9dHb0Kkc3cYxphubNzB7bwZ9qdbctWYLuDnt3xDXh8fNvNFtlx9f5rPlpmVXKpMFiiKRllskjGsGCu3YGpWQyXzbb4tpCpqBMEqy6xNg1RxUYMSpVIJFTfk_nJ38O7PiCHqQxssdp3p0Y1BcykKCZwXeVqVl1XrXQgeGz349mD8STPQZ0n1P0l1klRfJE1YecGOrovow-9uPKLXezRd3L-Hyv-g6R1QqAIyDhzYuctSCCX-AsZ-jIY</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Olive-Gadea, Marta</creator><creator>Crespo, Carlos</creator><creator>Granes, Cristina</creator><creator>Hernandez-Perez, Maria</creator><creator>Pérez de la Ossa, Natalia</creator><creator>Laredo, Carlos</creator><creator>Urra, Xabier</creator><creator>Carlos Soler, Juan</creator><creator>Soler, Alexander</creator><creator>Puyalto, Paloma</creator><creator>Cuadras, Patricia</creator><creator>Marti, Cristian</creator><creator>Ribo, Marc</creator><general>American Heart Association, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4626-6360</orcidid><orcidid>https://orcid.org/0000-0002-0767-9752</orcidid><orcidid>https://orcid.org/0000-0002-4763-5252</orcidid><orcidid>https://orcid.org/0000-0001-9242-043X</orcidid><orcidid>https://orcid.org/0000-0002-4828-5231</orcidid></search><sort><creationdate>20201001</creationdate><title>Deep Learning Based Software to Identify Large Vessel Occlusion on Noncontrast Computed Tomography</title><author>Olive-Gadea, Marta ; Crespo, Carlos ; Granes, Cristina ; Hernandez-Perez, Maria ; Pérez de la Ossa, Natalia ; Laredo, Carlos ; Urra, Xabier ; Carlos Soler, Juan ; Soler, Alexander ; Puyalto, Paloma ; Cuadras, Patricia ; Marti, Cristian ; Ribo, Marc</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4246-47e37f6cefefe1e9118b0ad1d0945b5b7467de0319c1ccb5b31923d063866e373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Olive-Gadea, Marta</creatorcontrib><creatorcontrib>Crespo, Carlos</creatorcontrib><creatorcontrib>Granes, Cristina</creatorcontrib><creatorcontrib>Hernandez-Perez, Maria</creatorcontrib><creatorcontrib>Pérez de la Ossa, Natalia</creatorcontrib><creatorcontrib>Laredo, Carlos</creatorcontrib><creatorcontrib>Urra, Xabier</creatorcontrib><creatorcontrib>Carlos Soler, Juan</creatorcontrib><creatorcontrib>Soler, Alexander</creatorcontrib><creatorcontrib>Puyalto, Paloma</creatorcontrib><creatorcontrib>Cuadras, Patricia</creatorcontrib><creatorcontrib>Marti, Cristian</creatorcontrib><creatorcontrib>Ribo, Marc</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Stroke (1970)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Olive-Gadea, Marta</au><au>Crespo, Carlos</au><au>Granes, Cristina</au><au>Hernandez-Perez, Maria</au><au>Pérez de la Ossa, Natalia</au><au>Laredo, Carlos</au><au>Urra, Xabier</au><au>Carlos Soler, Juan</au><au>Soler, Alexander</au><au>Puyalto, Paloma</au><au>Cuadras, Patricia</au><au>Marti, Cristian</au><au>Ribo, Marc</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep Learning Based Software to Identify Large Vessel Occlusion on Noncontrast Computed Tomography</atitle><jtitle>Stroke (1970)</jtitle><date>2020-10-01</date><risdate>2020</risdate><volume>51</volume><issue>10</issue><spage>3133</spage><epage>3137</epage><pages>3133-3137</pages><issn>0039-2499</issn><eissn>1524-4628</eissn><abstract>BACKGROUND AND PURPOSE:Reliable recognition of large vessel occlusion (LVO) on noncontrast computed tomography (NCCT) may accelerate identification of endovascular treatment candidates. We aim to validate a machine learning algorithm (MethinksLVO) to identify LVO on NCCT.
METHODS:Patients with suspected acute stroke who underwent NCCT and computed tomography angiography (CTA) were included. Software detection of LVO (MethinksLVO) on NCCT was tested against the CTA readings of 2 experienced radiologists (NR-CTA). We used a deep learning algorithm to identify clot signs on NCCT. The software image output trained a binary classifier to determine LVO on NCCT. We studied software accuracy when adding National Institutes of Health Stroke Scale and time from onset to the model (MethinksLVO+).
RESULTS:From 1453 patients, 823 (57%) had LVO by NR-CTA. The area under the curve for the identification of LVO with MethinksLVO was 0.87 (sensitivity83%, specificity71%, positive predictive value79%, negative predictive value76%) and improved to 0.91 with MethinksLVO+ (sensitivity83%, specificity85%, positive predictive value88%, negative predictive value79%).
CONCLUSIONS:In patients with suspected acute stroke, MethinksLVO software can rapidly and reliably predict LVO. MethinksLVO could reduce the need to perform CTA, generate alarms, and increase the efficiency of patient transfers in stroke networks.</abstract><pub>American Heart Association, Inc</pub><doi>10.1161/STROKEAHA.120.030326</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-4626-6360</orcidid><orcidid>https://orcid.org/0000-0002-0767-9752</orcidid><orcidid>https://orcid.org/0000-0002-4763-5252</orcidid><orcidid>https://orcid.org/0000-0001-9242-043X</orcidid><orcidid>https://orcid.org/0000-0002-4828-5231</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0039-2499 |
ispartof | Stroke (1970), 2020-10, Vol.51 (10), p.3133-3137 |
issn | 0039-2499 1524-4628 |
language | eng |
recordid | cdi_proquest_miscellaneous_2437402275 |
source | Alma/SFX Local Collection |
title | Deep Learning Based Software to Identify Large Vessel Occlusion on Noncontrast Computed Tomography |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T19%3A23%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20Learning%20Based%20Software%20to%20Identify%20Large%20Vessel%20Occlusion%20on%20Noncontrast%20Computed%20Tomography&rft.jtitle=Stroke%20(1970)&rft.au=Olive-Gadea,%20Marta&rft.date=2020-10-01&rft.volume=51&rft.issue=10&rft.spage=3133&rft.epage=3137&rft.pages=3133-3137&rft.issn=0039-2499&rft.eissn=1524-4628&rft_id=info:doi/10.1161/STROKEAHA.120.030326&rft_dat=%3Cproquest_cross%3E2437402275%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4246-47e37f6cefefe1e9118b0ad1d0945b5b7467de0319c1ccb5b31923d063866e373%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2437402275&rft_id=info:pmid/&rfr_iscdi=true |