Loading…
Butterfly Methanes: Designing a Novel Class of anti-van't Hoff Carbons
Among different possible non-classical structures, the stabilization of half-planar tetracoordinate carbon conformation is believed to be the most difficult one. Herein, we designed three types of half-planar tetracoordinate carbon compounds computationally by employing hybrid stabilization effects...
Saved in:
Published in: | Chemphyschem 2020-10, Vol.21 (20), p.2272-2278 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Among different possible non-classical structures, the stabilization of half-planar tetracoordinate carbon conformation is believed to be the most difficult one. Herein, we designed three types of half-planar tetracoordinate carbon compounds computationally by employing hybrid stabilization effects of substituents. The axial hydrogens of unstable half-planar methane are substituted with π-acceptor and σ-donor substituents such as -BH
, -Li and the equatorial substituents selected are a combination of electropositive atoms (σ-donors)/electronegative atoms (σ-acceptors and π-donors). To establish the stabilization factors, we conducted a detailed study on vibrational frequency analysis, molecular orbital analysis (including Natural Bond Orbitals) and electrostatic potential (ESP) analysis of optimized molecular geometries using density functional theory. |
---|---|
ISSN: | 1439-7641 |
DOI: | 10.1002/cphc.202000501 |